Comptabilité des flux de matières dans les régions et les départements

Guide méthodologique
Comptabilité des flux de matières dans les régions et les départements

Guide méthodologique
Ce guide est le fruit de la convention signée entre le Service de l’observation et des statistiques (SOeS), l’association Alterre Bourgogne, le CNRS et l’université Panthéon-Sorbonne Paris 1

Collection Références du Service de l’observation et des statistiques (SOeS)

Directeur de la publication : Jean-Paul Albertini

Pilotage de la convention : SOeS

Rédacteurs :
- Pascale Repellin (Alterre Bourgogne)
- Benoît Duret (agence de conseil Mydiane)
- Sabine Barles (université Panthéon-Sorbonne Paris 1)

Secrétariat de rédaction : Céline Carrière

Conception graphique et réalisation :
Chromatiques Éditions

Crédits photos : Arnaud Bouissou, Laurent Mignaux, METL-MEDDE

Illustration de la page de couverture : Alterre Bourgogne, 2013
Sommaire

Avant-propos ... 7

Partie 1 - La comptabilité des flux de matières :
intérêts et principe ... 9
Introduction ... 11
L’écologie territoriale* : comprendre l’économie* physique des territoires*,
un champ de recherche et d’action émergent .. 11
Pourquoi réaliser une analyse des flux de matières* ? 12
Le principe d’une analyse des flux de matières* .. 12
Ce que n’est pas une analyse des flux de matières* ... 14
Les expériences bourguignonnes et genevoises .. 14
L’actualité de la comptabilité des flux de matières ... 15

Partie 2 - La comptabilité des flux de matières :
eléments méthodologiques .. 17
Le principe des analyses de flux de matières ... 19
La méthodologie proposée ... 21
L’organisation des données .. 21
La gestion du projet .. 21
Fiche 1. L’extraction intérieure utilisée .. 23
Fiche 2. L’extraction intérieure inutilisée .. 39
Fiche 3. Les importations et exportations ... 41
Fiche 4. Les émissions dans la nature .. 53
Fiche 5. Les éléments d’équilibrage ... 65
Fiche 6. L’addition nette au stock .. 71
Fiche 7. Les flux indirects associés aux importations et exportations 73

Partie 3 - La comptabilité des flux de matières :
exploitations et analyses .. 75
Un outil innovant pour la compréhension du fonctionnement des territoires .. 77
Exploitations d’une analyse de flux de matières .. 79
Coût de réalisation d’une analyse de flux de matières* à une échelle régionale et départementale ... 93

Partie 4 - La comptabilité des flux de matières :
perspectives et recommandations ... 95
Introduction ... 97
Organiser une gouvernance régionale des flux de ressources 99
Approfondir les AFM par des approches complémentaires 103

Glossaire .. 110

Bibliographie ... 111
Table des figures
Table des tableaux

<table>
<thead>
<tr>
<th>Tableau</th>
<th>Titre</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.1</td>
<td>nomenclature pour la biomasse issue de l’agriculture</td>
<td>25</td>
</tr>
<tr>
<td>2.2</td>
<td>taux de récupération des résidus de récolte</td>
<td>29</td>
</tr>
<tr>
<td>2.3</td>
<td>unités de mesure pour le bois</td>
<td>30</td>
</tr>
<tr>
<td>2.4</td>
<td>facteurs standards pour convertir les quantités indiquées en volume (m³) en poids (à 15 % d’humidité)</td>
<td>30</td>
</tr>
<tr>
<td>2.5</td>
<td>taux d’écorce</td>
<td>30</td>
</tr>
<tr>
<td>2.6</td>
<td>nomenclature pour la biomasse issue de la sylviculture</td>
<td>31</td>
</tr>
<tr>
<td>2.7</td>
<td>nomenclature pour la biomasse aquatique</td>
<td>33</td>
</tr>
<tr>
<td>2.8</td>
<td>nomenclature pour la biomasse issue de la chasse et de la cueillette</td>
<td>34</td>
</tr>
<tr>
<td>2.9</td>
<td>nomenclature pour les minerais métalliques</td>
<td>35</td>
</tr>
<tr>
<td>2.10</td>
<td>nomenclature pour les minerais non métalliques</td>
<td>36</td>
</tr>
<tr>
<td>2.11</td>
<td>nomenclature pour les combustibles fossiles</td>
<td>38</td>
</tr>
<tr>
<td>2.12</td>
<td>nomenclature des importations/exportations</td>
<td>43</td>
</tr>
<tr>
<td>2.13</td>
<td>nomenclature NST 2007, par division</td>
<td>45</td>
</tr>
<tr>
<td>2.14</td>
<td>emboîtement des nomenclatures NST et MFA</td>
<td>49</td>
</tr>
<tr>
<td>2.15</td>
<td>nomenclature des émissions dans la nature</td>
<td>53</td>
</tr>
<tr>
<td>2.16</td>
<td>nomenclature des émissions dans l’air</td>
<td>54</td>
</tr>
<tr>
<td>2.17</td>
<td>nomenclature de la production de déchets</td>
<td>55</td>
</tr>
<tr>
<td>2.18</td>
<td>déchets issus de l’agriculture, de la forêt et de la pêche en France en 2010</td>
<td>57</td>
</tr>
<tr>
<td>2.19</td>
<td>nomenclature des rejets dans l’eau</td>
<td>59</td>
</tr>
<tr>
<td>2.20</td>
<td>correspondance entre la base EIDER et la nomenclature MFA pour les rejets dans l’eau</td>
<td>59</td>
</tr>
<tr>
<td>2.21</td>
<td>nomenclature de l’utilisation de produits dissipatifs</td>
<td>61</td>
</tr>
<tr>
<td>2.22</td>
<td>nomenclature des pertes dissipatives</td>
<td>63</td>
</tr>
<tr>
<td>2.23</td>
<td>nomenclature des éléments d’équilibrage</td>
<td>65</td>
</tr>
<tr>
<td>2.24</td>
<td>coefficients pour le calcul des quantités d’oxygène provenant de la combustion</td>
<td>66</td>
</tr>
<tr>
<td>2.25</td>
<td>coefficients pour le calcul des quantités d’oxygène provenant de l’oxydation de l’hydrogène</td>
<td>66</td>
</tr>
<tr>
<td>2.26</td>
<td>coefficients pour le calcul des quantités d’oxygène nécessaire à la respiration</td>
<td>67</td>
</tr>
<tr>
<td>2.27</td>
<td>coefficients pour le calcul des quantités de vapeur d’eau produite issue de la combustion de combustibles fossiles contenant de l’eau</td>
<td>69</td>
</tr>
<tr>
<td>2.28</td>
<td>coefficients pour le calcul des quantités de vapeur d’eau issue de la combustion de combustibles fossiles contenant des composés hydrogénés</td>
<td>69</td>
</tr>
<tr>
<td>2.29</td>
<td>coefficients pour le calcul des quantités de dioxyde de carbone et de vapeur d’eau issus de la respiration</td>
<td>70</td>
</tr>
<tr>
<td>2.30</td>
<td>rapports entre les flux indirects et les flux apparents par grandes familles de flux*</td>
<td>73</td>
</tr>
<tr>
<td>3.1</td>
<td>principaux indicateurs dérivés de l’AFM territoriale : définition et utilisation</td>
<td>80</td>
</tr>
<tr>
<td>3.2</td>
<td>indicateurs dérivés de l’AFM, région Bourgogne et ses départements, en France, en 2010</td>
<td>83</td>
</tr>
<tr>
<td>3.3</td>
<td>importations en Bourgogne</td>
<td>85</td>
</tr>
<tr>
<td>3.4</td>
<td>origine et destination des fruits et légumes en Haute-Garonne en 2006</td>
<td>90</td>
</tr>
<tr>
<td>4.1</td>
<td>empreinte aquatique mondiale moyenne 1996-2005</td>
<td>107</td>
</tr>
</tbody>
</table>
La conférence environnementale de septembre 2013 a mis en avant l’économie circulaire, dont l’objectif majeur est d’optimiser les flux d’énergie et de matières pour utiliser efficacement le minimum de ressources et réduire la production de déchets, comme une solution alternative au modèle économique linéaire (consistant à « produire-consommer-jeter »). Dans un objectif de diffusion de ce concept applicable localement, ce guide méthodologique répond au besoin d’améliorer la connaissance des gisements « matières » des territoires, afin d’élaborer des stratégies régionales d’économie circulaire. La méthodologie décrite dans le guide a donc vocation à alimenter les plates-formes de connaissances des flux de matières et leur évolution au niveau territorial, telles que décrites dans la feuille de route de la conférence environnementale.

Ce guide méthodologique, destiné aux collectivités territoriales, aux Directions régionales de l’environnement, de l’aménagement et du logement (DREAL) et tout autre acteur souhaitant mettre en œuvre une analyse/comptabilité de flux de matières à un échelon régional ou départemental est l’aboutissement du travail issu de la convention passée entre le SOeS, l’université Paris 1/CNRS et Alterre Bourgogne (avec la contribution de l’agence de conseil Mydiane).

Il s’appuie sur la méthodologie développée par Eurostat (Economy-wide material flow accounts and derived indicators – A methodological guide, 2001), utilisée au niveau national par le SOeS pour réaliser le rapportage européen sur les flux de matières et sur la construction de l’analyse de flux de matières menée en région Bourgogne. Il fournit les éléments méthodologiques nécessaires à la construction de cette analyse à un niveau infranational et en particulier régional.

Ce guide méthodologique est composé de quatre parties indépendantes :
- la première partie présente la démarche, ses principes et enjeux ; elle est destinée aux acteurs novices en comptabilité de flux de matières ;
- la deuxième, composée de fiches thématiques permet la mise en œuvre effective d’une comptabilité de flux de matières à l’échelon infranational ;
- la troisième partie traite de l’analyse des données résultant de l’application de la méthode proposée en deuxième partie ;
- la quatrième partie met en perspective et apporte des recommandations pour améliorer l’analyse des flux de matières.

Note : dans chaque partie, les (*) renvoient à un concept défini dans le glossaire.

La comptabilité des flux de matières : intérêts et principe
La comptabilité des flux de matières: intérêts et principe

Introduction

Émissions de gaz à effet de serre, rarefaction des ressources, gaspillage alimentaire, pic pétrolier, demain peut-être pic du phosphore ; mais aussi mise en valeur de ressources locales, développement territorial, équité écologique... Autant d’enjeux environnementaux, sociaux, économiques que doivent dorénavant prendre en compte nos sociétés lorsqu’elles utilisent, partagent et transforment les ressources fournies par la biosphère : les matières qui la constituent sont au fondement du fonctionnement des sociétés humaines, de même qu’elles façonnent les paysages et supportent la biodiversité.

Une approche quantitative des flux de matières – i.e. une comptabilité matérielle – apparaît ainsi comme une nécessité dans le contexte de la finitude des ressources. Si elle est désormais – depuis peu néanmoins – établie à l’échelle nationale, très peu de territoires infranationaux ont fait l’objet de bilans de matières. Dans le contexte d’une économie mondialisée marquée par les changements de l’environnement planétaire, ces territoires sont pourtant des lieux privilégiés pour la définition et la mise en œuvre des stratégies de transition écologique. La décentralisation a de plus fait des collectivités qui les administrent des acteurs fondamentaux des politiques d’aménagement, de développement et d’environnement.

La première partie de ce guide vise à préciser les enjeux de la comptabilité des flux de matières dans la perspective de l’écologie territoriale (§ 2), à en expliciter le rôle (§ 3), à indiquer les principes qui président à sa réalisation (§ 4), tout en en signalant les limites (§ 5), à illustrer son fonctionnement (§ 6) et enfin à situer la démarche proposée au sein des initiatives tant nationales qu’internationales de comptabilité matérielle (§ 7).

L’écologie territoriale : comprendre l’économie physique des territoires, un champ de recherche et d’action émergent

Si le fonctionnement des territoires est souvent analysé au prisme de l’économie et des flux monétaires qu’ils mettent en jeu, il repose avant tout sur la mobilisation d’importants flux de matières et d’énergie puisés dans la biosphère qui permettent la vie de leurs habitants, le développement de leurs activités, les échanges en leur sein et entre territoires. Ces flux d’énergie et de matières sont ainsi indispensables aux sociétés, comme ils le sont à la nature. Ils sont porteurs d’enjeux majeurs en termes économiques, sociaux et environnementaux. Ces interactions entre biosphère et société sont le principal objet d’étude de l’écologie territoriale.

Le fonctionnement d’une société implique en effet le prélèvement de ressources naturelles et l’émission de rejets de toute nature. Ces prélèvements et ces rejets ont des conséquences sur les milieux – transformation des écosystèmes, pollution, épisode de rejets de matières nécessaires au fonctionnement de l’écosystème. Symétriquement, les caractéristiques des milieux naturels ont une influence sur les sociétés puisque d’eux dépendent non seulement la fourniture des ressources qui est à la base de l’économie, mais aussi une partie du cadre de vie et des aménités accessibles aux habitants. Ils rendent aussi des services non matériels et non quantifiables, qui sont pourtant fondamentaux. Enfin, les modifications du milieux engendrées par les activités humaines ont, à plus ou moins long terme, un effet sur ces activités elles-mêmes, puisqu’elles en bénéficient ou les subissent à nouveau. Il est ainsi de l’accès aux ressources ou au contraire leur épisode, les pollutions diverses et plus généralement les changements de l’environnement, toutes échelles confondues. Il s’agit donc d’effets rétroactifs des activités humaines. Ces effets peuvent s’inscrire dans la durée et se traduire par une modification de l’environnement, se répercutant sur la société à un rythme plus ou moins rapide ; mais ils peuvent aussi aggraver des risques qui ne sont plus tout à fait naturels et se manifester par des événements extrêmes tels qu’inondations et canicules.

Afin de mieux comprendre ces processus, il est important de caractériser la façon dont les territoires prélèvent, transforment, consomment, rejettent, exportent énergie et matières : c’est ce que l’on appelle le métabolisme territorial, par référence au fonctionnement d’un organisme vivant mais il ne s’agit pas, bien entendu, d’assembler les territoires à des organismes vivants. Cette vision systémique se démarque des approches sectorielles qui caractérisent généralement les démarches environnementales, qui séparent étude des ressources et étude des rejets, ou qui portent sur un flux spécifique (eau, énergie, etc.) sans prendre en compte les interactions entre eux, ou enfin qui isolent différents secteurs (habitat, transport, industrie, agriculture, etc.). Ces approches ne permettent pas d’avoir une vision d’ensemble du métabolisme, et ne peuvent par conséquent apporter que des réponses limitées aux problèmes rencontrés. Elles engendrent aussi fréquemment des réponses end-of-pipe, de bout de tuyau, c’est-à-dire qui soignent les effets, souvent mal et à un coût élevé pour la société, plus qu’elles ne considèrent les causes.

Observer le métabolisme territorial constitue aussi une occasion de renverser la perspective, comme le suggère la deuxième feuille de route de la conférence environnementale, lorsqu’elle propose de décliner l’économie circulaire comme un projet de territoire et de reconnaître les gisements qu’il recèle. En effet, les matières qui sont rejetées dans la nature peuvent souvent faire l’objet d’une utilisation et devenir les matières premières d’activités économiques ; bien plus, le territoire contient souvent des ressources méconnues qui pourraient constituer des alternatives à d’autres plus coûteuses, plus rares, plus lointaines. Il est ainsi important d’identifier les ressources territoriales oubliées ou négligées qui pourraient être porteuses de développement tout en limitant la pression des sociétés sur la biosphère et les effets rétroactifs qui ont été mentionnés plus haut.

L’écologie territoriale vise ainsi à une meilleure compréhension du métabolisme des territoires et s’inscrit simultanément dans une perspective d’action. L’analyse des flux de matières est à la base de sa démarche.
Pourquoi réaliser une analyse des flux de matières ?

Le métabolisme territorial se caractérise aujourd’hui, dans la plupart des cas, par une circulation linéaire des matières : importations de matières extraites de la biosphère et de la lithosphère (transformées ou pas), stockage ou rejet de celles-ci sous une forme et en un lieu différents. Celle-ci s’accompagne de l’ouverture des cycles biogéochimiques. Cela signifie une augmentation des matières en circulation avec, en amont, l’épuisement de certaines ressources (phosphate, combustibles fossiles), et en aval, la constitution de stocks que les processus naturels ne parviennent pas à résorber (gaz à effet de serre dans l’atmosphère, azote et phosphate dans les sols et les milieux aquatiques, etc.). L’essentiel des problèmes environnementaux, locaux, régionaux et globaux s’explique ainsi : raréfaction voire pénurie des ressources, changement climatique, eutrophisation, pollution acide, perte de biodiversité (qui a aussi d’autres causes), etc. Un tel constat n’a pas pour objet de stigmatiser les territoires, mais de mettre en avant le potentiel qu’ils peuvent représenter dans la perspective d’une transition écologique qui permettrait une moindre consommation d’énergie et de matières, une substitution des ressources fossiles par des ressources renouvelables et garantirait leur meilleure résilience.

Le métabolisme territorial est ainsi porteur d’enjeux cruciaux qui concernent aussi bien les sociétés que la biosphère. Dès lors, il est important de pouvoir le quantifier. Cette quantification a plusieurs objectifs :

- « peser » les flux induits par le fonctionnement d’un territoire donné de façon à évaluer l’utilisation des ressources et son impact sur les milieux ;
- mesurer, grâce aux différents indicateurs qui en découlent, sa performance énergétique et matérielle, l’intensité de ses échanges avec l’extérieur (qui peut traduire à la fois dynamisme et dépendance pour son approvisionnement ou le traitement de ses déchets par exemple), sa pression sur les ressources (flux entrants) et les milieux (flux sortants) ;
- établir une vision synthétique et pédagogique du fonctionnement du territoire du point de vue de la consommation de matières, et favoriser la construction d’une vision partagée entre les acteurs du territoire. Celle-ci permettra de développer un projet d’écologie territoriale ;
- suivre et évaluer les politiques et actions engagées via une réactualisation régulière de cette « photographie » et des indicateurs produits ;
- observer la part respective des différents flux, et leur désagrégation par catégorie de matières (biomasse végétale, matériaux de construction, combustibles fossiles par exemple) ;
- identifier des pistes d’amélioration des performances du territoire dans une perspective de transition écologique ;
- comparer les analyses de flux de matières entre territoires et mieux comprendre les processus sous-jacents – politiques, techniques, sociaux, économiques, environnementaux – et les enjeux propres à chaque territoire ;
- constituer une base d’information nécessaire à d’autres travaux, notamment le calcul d’aires d’approvisionnement et d’empreintes environnementales : celles-ci sont intéressantes dans la perspective de la coopération interterritoriale et de la solidarité intragénérationnelle.

Le principe d’une analyse des flux de matières

La caractérisation du métabolisme territorial repose sur la quantification des flux de matières et d’énergie qui en dépendent. Ces démarches permettent de peser, au sens strict du terme, c’est-à-dire en tonnes de matières, le fonctionnement d’un territoire donné ou d’évaluer leur comportement énergétique lorsqu’elles sont exprimées en joules ou en watt-heures (ou toute autre unité de comptabilité énergétique). L’objet du présent guide est d’apporter une réponse à ces questions, en se concentrant sur la méthodologie et les outils utilisés.

Plusieurs méthodes existent en termes de comptabilité matérielle (encadré 1.2). Afin de proposer une méthode simple, fiable et générale, le présent guide repose sur une adaptation de la méthode du service européen de statistiques (Eurostat) aux échelles infrarégionales (région et département). Cette méthode sert de base à la fourniture par les États membres de l’Union européenne de leurs comptes de flux de matières auprès d’Eurostat.

Règlement 691/2011, relatif aux comptes économiques européens de l’environnement, annexe III.
La méthode retenue se caractérise donc de la façon suivante :

- comme toutes les méthodes de comptabilité matérielle, elle repose sur la loi de conservation de la masse dite aussi loi de Lavoisier :
 « Rien ne se perd, rien ne se crée, tout se transforme » ;
- le système étudié est borné dans l’espace par les limites administratives (ou toute autre limite à caractère géographique) du territoire2 considéré ; il ne contient que la population humaine, ses activités, ses productions et ses artefacts. Le système exclut donc les composantes naturelles du territoire3 étudié (eau, air, sol) ;
- les flux étudiés sont très globaux (entrées, sorties, addition au stock, recyclage), avec une attention particulière aux flux indirects ou flux cachés. Il ne s’agit donc pas d’analyser des fonctions, des activités et des processus, mais des échanges entre une société4 localisée donnée et son environnement (nature d’une part, autres sociétés d’autre part) ;
- les flux d’eau ne sont pas intégrés au bilan : leur importance masquerait tous les autres. L’eau doit donc faire l’objet, d’un travail spécifique (e.g. démarche empreinte eau) ;
- les flux peuvent être désagrégés, c’est-à-dire que le bilan détermine aussi les flux correspondant à des matières ou plutôt des groupes de matières spécifiques : ceci est important pour l’analyse et l’identification des pistes d’action.

Une fois les limites du système définies, par exemple le système socio-économique5 d’une région française, les flux matériels peuvent être comptabilisés (partie 2).

Il s’agit dans un premier temps de quantifier les entrées :
- extraction locale de biomasse6, de minéraux et minerais et de combustibles fossiles ;
- importations de matières premières, de produits semi-finis et finis. Les sorties sont ensuite déterminées :
- exportations vers d’autres territoires7 ;
- rejets vers la nature : émissions vers l’air, vers l’eau, vers le sol (liquides, gazeux et solides).

Le flux de matières recyclées n’entre ni ne sort. Ces matières ne sont ni extraites de la nature, ni retournées à elle, elles demeurent donc dans le système étudié. Leur utilisation se traduit par une moindre utilisation de matières extraites localement ou importées.

Enfin, pour être complète, l’analyse des flux de matières détermine à la fois l’extraction locale inutilisée et les flux indirects associés aux importations et aux exportations. L’extraction locale inutilisée dans l’économie comptabilise les boues de dragage, les déblais inutilisés, les résidus agricoles non transformés, etc. Ce flux est identique en entrée et en sortie, puisqu’il n’y a ni transformation ni utilisation. Les flux indirects rendent compte des consommations matérielles extérieures au territoire et associées au métabolisme de celui-ci. Un produit

2 Il s’agit de la biomasse végétale (cultures, prairies, bois, cueillette) et animale (chasse).
3 L’élevage est considéré comme faisant partie du système « société/économie » : la production de biomasse animale repose notamment sur la consommation de biomasse végétale qui est comptabilisée ici.

Encadré 1.2 : les deux familles d’analyses de flux de matières8

La comptabilité matérielle repose sur la loi de Lavoisier :
« Rien ne se perd, rien ne se crée, tout se transforme ». Sur cette base, plusieurs méthodes peuvent être mobilisées (Brunner & Reichberger, 2004 ; Barles, 2009), qui appartiennent à deux grandes familles.

La seconde famille comptabilise l’ensemble des flux entrants dans le système, ainsi que l’ensemble des flux sortants sans analyser au préalable les processus qui les unissent. Le système est en quelque sorte une boîte noire qui ne sera ouverte qu’une fois le bilan de matière réalisé. C’est le cas de la méthode mise au point par le service européen de statistique (Eurostat). Sa vocation initiale est la réalisation de bilans nationaux voire continen-taux, la quantification des flux de matières apparaissant comme un complément des indicateurs économiques usuels (CGDD – SOes, 2009). Ces méthodes sont descendantes (ou top-down), c’est-à-dire basées sur des données globales (éventuellement susceptibles d’être désagrégées).

Selon les méthodes, les limites du système peuvent varier. Elles sont géographiques (et souvent administratives, pour des raisons de disponibilités des données). Ainsi, il est possible d’étudier une région, un département, ou une commune (bien que dans ce dernier cas les données existent rarement). La principale différence d’une méthode à l’autre réside dans la prise en compte, ou non, au sein du système, du milieu naturel compris dans ces limites (eau, air, sol).

Le présent guide propose une adaptation de la méthode Eurostat aux échelles infranationales. Il appartient donc à la deuxième famille de méthodes. Ce choix se justifie pour trois raisons principales :

• la méthode permet de ne pas préjuger des activités caractérisant les territoires10. Si les quatre activités mentionnées par Brunner et Reichberger semblent assez pertinentes pour la France et aujourd’hui, il n’en va peut-être pas de même partout et en tout temps. Par exemple, selon les sociétés, la religion, qui n’entre pas dans leur typologie, peut être à l’origine d’importants flux de matières. A contrario, l’activité « laver » n’a pas toujours eu le poids qu’elle a aujourd’hui ;

• elle est, toutes choses égales par ailleurs, comme on le verra à la lecture de la seconde partie du document, plus simple à mettre en œuvre puisqu’elle ne nécessite pas une analyse approfondie du fonctionnement interne du territoire d’étude ;

• enfin, la méthode Eurostat est à la base des comptes de flux de matières de la France. Elle correspond à un standard européen et, ayant un caractère générique, permet les comparaisons.
fi fini, entant dans le territoir avec une masse donnée, a en effet engendré une consommation totale de ressources bien supérieure pour sa production et son transport. C’est ce que les flux indirects permettent de prendre en compte.

La détermination de ces flux permet de calculer de façon simple un certain nombre d’indicateurs qui contribuent à caractériser le territoir et à identifier les enjeux locaux correspondants. L’analyse se poursuit par la désagrégation des flux en catégories de produits et matières afin d’aller plus loin dans l’analyse et dans l’identification de pistes d’action.

La figure 1.1. représente le métabolisme territorial tel qu’il émerge de la méthode retenue.

Ce que n’est pas une analyse des flux de matières

Les analyses de flux de matières fournissent des informations très riches sur les territoires et permettent d’identifier des enjeux en termes sociaux, économiques et environnementaux. Cependant, elles ne constituent pas un outil miracle qui se substituerait à tous les autres en termes d’indicateurs territoriaux. En effet, elles ne comptabilisent pas l’énergie en tant que telle, et donc ne constituent pas un bilan énergétique. De même, elles ne tiennent pas compte de la consommation d’eau, bien qu’il s’agisse d’un enjeu important pour certaines territoires. Quantifiant des matières brutes, le bilan ne permet pas de prendre en compte les enjeux associés à des flux très faibles en masse (par exemple associés à des substances rares et/ou toxiques). Reposant sur une approche entrées/sorties/stocks, il ne décrit pas non plus la circulation des matières au sein du territoire étudié. Ces limites peuvent être dépassées par la réalisation d’analyses complémentaires auquelles l’analyse des flux de matières peut servir de base.

La région Bourgogne

Alterre Bourgogne, l’Agence régionale pour l’environnement et le développement durable, est une association qui a une triple mission : l’observation de l’état de l’environnement régional, l’éducation et la formation au développement durable, l’accompagnement des projets de territoires (notamment les démarches Agenda 21). Les dispositifs d’observation de l’environnement mis en place jusqu’alors par Alterre restaient très segmentés (déchets produits, consommations d’énergies, émissions de gaz à effet de serre, eau prélevée, etc.) et ne permettaient pas d’avoir une vision plus intégrée de l’impact du fonctionnement du territoire sur les ressources naturelles. Par ailleurs, dans sa mission d’accompagnement des territoires, Alterre constate que les territoires ont souvent le sentiment que leur destin se joue ailleurs, dans le cadre de la mondialisation, alors qu’ils recèlent de ressources (naturelles, matérielles ou humaines) parfois sous-exploitées et sur lesquelles ils pourraient davantage baser leur développement. Aider les décideurs locaux et régionaux à se rendre compte d’où viennent et où partent les matières et produits qui sont mobilisés par le fonctionnement de leurs territoires a ainsi paru une première étape utile pour les sensibiliser et les interpeller.

Après un important travail de collecte d’informations, l’étude a permis de bâtir une base de données conséquente (de près de 3 000 lignes), qui pourrait être mise à disposition pour des études plus

Figure 1.1 : le métabolisme territorial : des échanges constants entre société et biosphère
La République et canton de Genève

Le canton de Genève a conduit une expérience pionnière en termes d’écologie industrielle et d’analyse des flux de matières et d’énergie. La loi sur l’action publique en vue d’un développement durable (Agenda 21), votée le 23 mars 2001, a en effet donné une base légale à la mise en œuvre de l’écologie industrielle, notamment à travers son article 12 : « L’État favorise la prise en compte des synergies possibles entre activités économiques en vue de minimiser leur impact sur l’environnement et recherche la possibilité d’une réalisation pilote ».

La mise en œuvre de cette loi a en particulier débuté par la réalisation d’une analyse des flux de matières et d’énergie (appartenant à la première famille décrite dans l’encadré 1.2), qui a conduit le canton à conclure sur « le caractère non durable de l’économie genevoise » (Gedec, 2005). Le bilan de matières et d’énergie a aussi permis d’identifier des flux cibles, compte tenu de la très forte dépendance du canton à l’égard des ressources extérieures : l’énergie, les matériaux de construction, et les produits alimentaires. Il a conduit à retenir trois actions prioritaires : renforcer la stratégie pour diminuer la consommation d’électricité et d’énergie pour le chauffage ; augmenter la capacité des installations de méthanisation des déchets organiques ; améliorer l’efficacité du recyclage des matériaux de construction (Ermkan, 2006). Parmi les résultats, et à titre d’exemple, l’étude montre que les déchets de bois de démolition représentent quatre fois la production de la forêt genevoise. On mesure l’intérêt de la valorisation de cette ressource secondaire, jusque-là négligée.

La réalisation du bilan de matières et d’énergie a joué un rôle de déclencheur pour les politiques publiques genevoises. En effet, dans la foulée de ces travaux, le canton a voté le 19 novembre 2010 une nouvelle loi qui remplace notamment l’article 12 de la loi de 2001 par la rédaction suivante : « L’État œuvre pour la diminution de la consommation d’énergie et de l’économie industrielle ; existence de flux critiques. De plus, en septembre 2013, la deuxième feuille de route pour la transition écologique (encadré 1.3) a placé l’économie circulaire et l’écologie industrielle au centre des stratégies à mettre en œuvre. Elle persiste sur la nécessité d’approches localisées plaçant les ressources et les flux d’énergie et de matières au cœur des projets de territoire. Les expériences locales telles que celle de la région Bourgogne ou de Genève ou les démarches engagées par l’OCDE, le PNUM, le SoeS, attestent que la comptabilité matérielle n’est plus uniquement dédiée à l’observation et au suivi – rôle nécessaire qu’elle remplit depuis quelques années en Europe – mais constitue aussi un préalable indispensable à la mise en œuvre de démarches d’écologie territoriale ou d’économie circulaire pour reprendre la terminologie de la conférence environnementale.
Parmi les 50 mesures de la deuxième feuille de route, les suivantes sont à retenir en particulier :

Décliner l’économie circulaire comme un projet de territoires

9. **Accroître la connaissance des flux de déchets et de matières, ainsi que des coûts et financements associés à leur gestion. Simplifier et faciliter l’accès à l’information correspondante, y compris pour le citoyen.**

Connaissance des gisements d’un territoire

Les régions s’investiront progressivement dans l’élaboration de stratégies régionales d’économie circulaire, intégrées à terme dans les schémas régionaux de développement économique. Elles se doteront de plateformes de connaissances des flux de matières au niveau territorial et de connexion entre les acteurs.

La connaissance territoriale des gisements sera renforcée, en incluant les déchets d’activités économiques, en particulier du BTP en lien avec les schémas de carrières.

[...]

11. **Développer l’écologie industrielle et territoriale (EIT) dans les territoires**

12. **Conservant les ressources sur le territoire**

 Afin de garder sur le territoire la valeur ajoutée des activités et des matériaux issus des déchets valorisables, la France soutiendra au niveau européen les propositions en ce sens, incluant la proposition de limiter les transferts transfrontaliers. Une réflexion sera engagée par le Gouvernement sur la mise en œuvre du principe de proximité à l’échelle pertinente pour chaque flux.

La conférence de mise en œuvre du 16 décembre 2013 a confirmé l’importance des démarches mentionnées dans la feuille de route.
La comptabilité des flux de matières : éléments méthodologiques
La comptabilité des flux de matières : éléments méthodologiques

Le principe des analyses de flux de matières

Les analyses de flux de matières recensent l’intégralité des flux de matières qui entrent dans le système socio-économique, y sont stockés ou rejettés vers la nature. Cette comptabilité est basée sur le principe de la conservation de la masse : toutes les matières entrant dans le système en ressortiront inéluctablement sous une forme ou une autre. C’est l’application de la célèbre loi d’Antoine Lavoisier : « Rien ne se perd, rien ne se crée, tout se transforme ». Les flux sont comptabilisés en tonnes indépendamment du type de matières et de leur toxicité.

Représentation schématique du principe d’une analyse de flux de matières

Ce schéma montre le fonctionnement d’un territoire. Le socle central en représente le système socio-économique, avec, autour, le reste du monde qui contribue aux échanges économiques avec ce territoire (flèches importations et exportations). Ce premier socle, qui représente notre société, est enchâssé dans un second socle, celui de la biosphère, dans laquelle le système socio-économique vient puiser pour fonctionner (flèches extractions intérieures utilisées et inutilisées). Ce schéma montre également les rejets vers la nature liés au fonctionnement du territoire (flèches émissions vers la nature).

Figure 2.1 : le métabolisme territorial

Source : Alterre Bourgogne, 2013
La réalisation d’une analyse de flux de matières 5 consiste à comptabiliser les flux matériels impliqués dans le fonctionnement socio-économique du territoire5, qui est vu comme un métabolisme biologique.

Ainsi sont calculés :

- les flux entrants :
 - les matières premières et récoltes extraites du territoire5 ;
 - les produits importés aussi bien bruts que finis ;
- et les flux sortants :
 - les différents rejets dans les milieux (émissions dans l’air, rejets dans l’eau et les sols, déchets enfouis...) ;
 - les produits exportés (matières premières, produits finis).

Par convention, la représentation du métabolisme du territoire5 se fera comme sur le schéma ci-contre (figure 2.2). Le principe de conservation de la matière s’appliquant, cela permet d’obtenir une balance physique équilibrée. Tous les flux entrants ressortent du système. Ceux qui ne ressortent pas sont ceux qui s’accumulent dans le stock de matières du territoire5, principalement sous la forme de bâtiments ou d’infrastructures.

Une prise en compte partielle de l’énergie

Seuls les flux de matières5 sont comptabilisés. En ce qui concerne l’énergie, les combustibles extrait, importés, consommés ou exportés sont comptabilisés en masse et non pas selon leur valeur énergétique.

En outre, les vecteurs énergétiques, tels que l’électricité, ne sont donc pas pris en compte. Pour une analyse spécifique sur l’énergie, d’autres approches peuvent utilement compléter celle des comptes de flux de matières5. Un bilan énergétique des approvisionnements et des consommations d’énergies du territoire5 peut ainsi être réalisé.

Les cahiers de l’observation territoriale de l’énergie et des gaz à effet de serre

Ensemble de cahiers techniques en ligne, édités par l’Ademe, le Réseau des agences régionales de l’énergie et de l’environnement (RARE) et le CGDD, qui a pour objectif de fournir aux observatoires et leurs partenaires une connaissance des méthodes de comptabilisation de l’énergie et des gaz à effet de serre pour des territoires infranationaux.

http://www.rare.fr/(cahiers_observat_GES/index.html

La non-prise en compte des flux d’eau

Les flux d’eau ne sont pas comptabilisés dans les comptes de flux de matières. Ils sont en effet tellement considérables qu’ils masquent tous les autres flux.

Les éléments d’équilibrage.

Afin de prendre en compte le principe de conservation de la matière, il est nécessaire d’équilibrer les entrées et les sorties. Pour cela, l’ensemble des éléments qui entrent en jeu dans les principaux processus que sont la combustion de combustibles, la respiration des humains et des animaux, la production d’engrais azotés à partir de l’arrachement de l’air sont comptabilisés.

Si l’on détaille par exemple la réaction de combustion, on a pour le charbon :

\[
\text{Carbone} + \text{oxygène} = \text{dioxyde de carbone}
\]

Et pour les hydrocarbures :

\[
\text{Hydrocarbure} + \text{oxygène} = \text{dioxyde de carbone} + \text{vapeur d’eau}
\]

Le carbone contenu dans un combustible qui brûle est comptabilisé dans les entrées, le dioxyde de carbone qui se dégage de la combustion est comptabilisé dans les émissions vers la nature. Ainsi, pour équilibrer les entrées et sorties, il faut également comptabiliser dans les entrées l’oxygène nécessaire aux combustions, et dans les sorties la vapeur d’eau issue de ces combustions.

Éléments d’équilibrage en sortie : la vapeur d’eau issue des combustions d’énergies, la vapeur d’eau et le dioxyde de carbone issus de la respiration des humains et du bétail.

La non-prise en compte de l’énergie et de la respiration des humains et des animaux entrant dans le territoire est corrigée par la mesure d’écrêtage, qui permet de comptabiliser l’oxygène nécessaire à la combustion des combustibles et de la respiration des humains et des animaux, après combustion.

Les flux indirects liés aux importations et exportations : s’il s’agit à la fois de matières invisibles et des flux de matières utilisées (notamment des combustibles) pour produire et transporter des matières ou des biens que le territoire5 étudié importe ou exporte, mais qui ne sont pas incorporés aux biens importés ou exportés du territoire5 concerné.

Figure 2.2 : schéma conventionnel d’une analyse des flux de matières

<table>
<thead>
<tr>
<th>Entrées</th>
<th>Additions nettes au stock</th>
<th>Sorties</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flux d’équilibrage (BI)</td>
<td>Extraction intérieure utilisée</td>
<td>Exportations</td>
</tr>
<tr>
<td>Extraction intérieure utilisée</td>
<td>Vers la nature</td>
<td>Recyclage</td>
</tr>
<tr>
<td>进出口</td>
<td>Imports / Exports</td>
<td>Recyclage</td>
</tr>
</tbody>
</table>

Source : Alterre Bourgogne

Références

Comptabilité des flux de matières dans les régions et les départements
La méthodologie proposée

La méthode proposée ici s’appuie sur ces expériences de comptabilité des flux de matières dans différents territoires, notamment Paris et petite couronne, Midi-Pyrénées, Bourgogne.

L’organisation des données

La mise en œuvre de cette méthode n’est pas automatisée. Il n’existe pas, à ce jour, d’outil permettant de structurer les données de façon standardisée et d’en automatiser le traitement.

Certaines recommandations peuvent également être faites pour faciliter le travail :

- l’élaboration de l’analyse des flux de matières fait appel à des données issues de dispositifs statistiques nationaux (base de données SitraM du ministère des Transports, statistiques agricoles fournies par le Service de la statistique et de la prospective (SSP) du ministère de l’Agriculture, etc.) mais aussi à des données spécifiques à chaque territoire qui sont collectées localement. Il est donc très important de bien indiquer les sources utilisées, afin d’assurer une bonne traçabilité des données mobilisées. Ce point a d’autant plus d’importance que le dispositif sera fait pour être mis à jour ;

- pour l’agrégation des différentes sources de données, il s’agit de ventiler les données d’extraction intérieure et celles d’importations-exportations dans la nomenclature Eurostat d’une analyse des flux de matières. Or, ces données sont issues de bases structurées différemment de celle de l’AFM. Pour respecter la nomenclature de l’AFM, la règle suivante s’applique : toute donnée ne pouvant être ventilée dans les lignes les plus détaillées de la nomenclature sera regroupée dans le niveau supérieur.

Exemple : toutes les données ne pouvant être classées dans les lignes 1.1.1 à 1.1.10 seront regroupées dans la ligne 1.1 ;

- les résultats sont généralement diffusés par grandes catégories de flux de matières (exemple de catégorie : minéraux de construction). La structuration des données doit toutefois permettre d’accéder au niveau le plus fin d’informations (exemple : sable et gravier). Il est en effet important de garder cette possibilité de désagrégation pour pouvoir mener dans un second temps des études plus fines sur certains flux.

La gestion du projet

Afin d’obtenir une bonne adhésion au projet d’analyse des flux de matières, il est nécessaire de mettre en place un comité de pilotage et un comité technique pour le suivi du projet.

Le comité de pilotage définira les objectifs du projet et les moyens de sa mise en œuvre. Le comité technique effectuera les choix méthodologiques. Il pourra notamment réfléchir s’il est souhaitable de disposer d’un historique des données, ou si certains flux peuvent, à dire d’experts, être négligés pour le territoire concerné.

Le comité technique regroupera notamment les principaux fournisseurs de données, ainsi que les personnes expertes pouvant aider à l’analyse. Pour exemple, le comité technique de suivi de l’analyse de flux de la Bourgogne a regroupé autour d’Alterre Bourgogne (Agence régionale pour l’environnement et le développement soutenable) les services mines et carrières et transports de la Direction régionale de l’environnement, de l’aménagement et du logement (Dreal), l’Insee, la Direction régionale de l’alimentation, de l’agriculture et de la forêt (Draaf), la Direction départementale du territoire de l’Yonne (DDT), le conseil général de la Nièvre, l’Ademe, la chambre d’agriculture de Côte-d’Or, Atmos’air Bourgogne (agence agréée pour la surveillance de la qualité de l’air) et le conseil régional de Bourgogne.

Il pourra également être fait appel à des pôles de recherche locaux.

Les membres de ce comité doivent être suffisamment divers sans être trop nombreux, afin de ne pas nuire à la qualité des échanges. Il faut donc étudier au préalable, pour chaque source de données, l’opportunité de mettre le producteur de la donnée dans ce comité. Le comité de suivi pourra toutefois être évolutif.

Références
L’extraction intérieure utilisée recouvre les matières extraites du territoire et utilisées, à savoir celles qui rentrent dans le système économique, contrairement à l’extraction intérieure que l’on appelle « inutilisée » (fiche 2, L’extraction intérieure inutilisée). Quatre catégories de matières sont distinguées :

1- la biomasse, qui comprend :
 - la biomasse issue de l’agriculture ;
 - la biomasse forestière ;
 - la biomasse aquatique ;
 - la biomasse issue de la chasse et de la cueillette ;
2- les minerais métalliques ;
3- les minéraux non métalliques ;
4- les combustibles fossiles.

Recommandations

Le guide d’Eurostat indique que la biomasse issue de la chasse et de la cueillette est quantitativement de faible importance. Le choix peut être fait de la négliger. La biomasse issue de la chasse a fait l’objet d’une estimation dans deux régions : en Midi-Pyrénées et en Bourgogne. Dans les deux cas, la biomasse prélevée annuellement par la chasse représente moins de 0,1 % de l’extraction locale.

De même, la biomasse aquatique, qui concerne uniquement la pêche professionnelle (hors aquaculture et pisciculture), peut être négligée dans certaines régions où les entreprises de pêche sont peu présentes.

Néanmoins, le suivi territorial des flux liés à la chasse, à la cueillette ou à la pêche peut présenter un intérêt en mettant en évidence les services rendus par les écosystèmes et leur évolution.

Près de 28 millions de tonnes de matières sont extraites chaque année du territoire© bourguignon et entrent dans le système socio-économique. Les matières extraites en Bourgogne représentent plus de 4 % de celles extraites dans l’ensemble du territoire© français et l’équivalent de 17 tonnes par Bourguignon, pour une moyenne de 10 tonnes par Français. Ce résultat montre le rôle de la Bourgogne en termes d’approvisionnement en matières.

Cela ressort plus particulièrement pour la biomasse issue de l’agriculture et celle issue de la forêt, qui représentent 44 % et 7 % des matières extraites en Bourgogne, alors qu’elles ne pèsent que 36 % et 4 % pour la France.
Fiche 1.1. La biomasse issue de l’agriculture

Périmètre

La biomasse issue de l’agriculture comprend toute biomasse d’origine végétale issue de l’agriculture destinée à l’alimentation animale ou à une utilisation humaine (que ce soit pour la consommation, des usages industriels, une transformation, des semences). Cela comprend donc les cultures céréalières, d’oléagineux, de protéagineux, les fruits, les légumes, mais aussi l’herbe des pâturages, les fourrages, les résidus de récolte utilisés, les cultures industrielles pour la fabrication d’agrocarburants ou celles de fibres comme le chanvre. La liste complète est présentée ci-dessous, selon la nomenclature d’Eurostat.

Cela ne comprend pas : les animaux issus des élevages, ni les produits issus de ces élevages tels que les œufs, la viande, le lait, etc.

Mais cela comprend : la biomasse prélevée dans le milieu naturel pour nourrir ces animaux (herbe broutée par le bétail, cultures fourragères, etc.)

Jardins et vergers familiaux

La production des jardins et vergers familiaux doit théoriquement être prise en compte selon la méthodologie d’Eurostat. La donnée statistique n’est toutefois pas facilement accessible dans les régions. Néanmoins, il paraît intéressant de l’estimer comme informations complémentaires. Il s’agit ainsi de valoriser les capacités d’autoproduction des citoyens.

Résidus de culture utilisés

Les résidus de culture comptabilisés sont ceux utilisés par l’économie, notamment par l’élevage pour la nourriture du bétail ou les litières, pour la production d’énergie, ou comme matière première pour des applications industrielles. Ce sont autant ceux qui sont vendus que ceux destinés à la consommation sur l’exploitation.

Les résidus qui restent sur le champ pour amendement du sol sont comptabilisés comme « flux inutilisés », sous-entendu « inutilisés par l’économie » (Fiche 2, L’extraction intérieure inutilisée).

 Cultures florales

Ces productions sont négligées au niveau national, eu égard à leur faible poids. Elles peuvent donc être également négligées au niveau d’un territoire infranational, sauf si celui-ci présentait une particularité en la matière.

Taux d’humidité

La méthode d’Eurostat comptabilise la biomasse en poids frais, à l’exception des fourrages, des fauches et pâtures et des coupes de bois, pour lesquels il s’agit d’appliquer par convention un taux d’humidité de 15 %. Toutefois, les données de statistiques agricoles concernant les pâturages et cultures fourragères sont déjà exprimées en masse de matières sèches, avec un taux d’humidité de 15 %. Il n’est donc pas nécessaire d’appliquer un facteur de correction lié au taux d’humidité.
Nomenclature et source des données

Tableau 2.1 : nomenclature pour la biomasse issue de l’agriculture

<table>
<thead>
<tr>
<th>Code MFA niveau 4</th>
<th>Libellé FR</th>
<th>Source</th>
<th>Thème/Sous-thème</th>
<th>Désignation/Produit/Libellé</th>
</tr>
</thead>
<tbody>
<tr>
<td>A.1</td>
<td>Biomasse</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A.1.1</td>
<td>Cultures (sauf fourragères)</td>
<td>Agreste + estimation</td>
<td>Jardins et vergers familiaux des non exploitants</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Céréales</td>
<td>Agreste - SAA02</td>
<td>Céréales</td>
<td>Blé tendre</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Blé dur</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Seigle et méteil</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Orge et escourgeon</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Avoine</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Maïs (grain et semence)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Sorgho</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Triticale</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Autres céréales non mélangées</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Mélanges de céréales (hors métei)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Riz</td>
</tr>
<tr>
<td>A.1.1.1</td>
<td>Céréales</td>
<td></td>
<td></td>
<td>Plants certifiés de pommes de terre</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Dessus de plants de pommes de terre</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Pommes de terre de féculerie</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Pommes de terre primeurs ou nouvelles (com. avant le 1-08)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Pommes de terre de conservation et demi-saison</td>
</tr>
<tr>
<td>A.1.1.1.1</td>
<td>Cultures sucrières</td>
<td>Agreste - SAA02</td>
<td>Pommes de terre</td>
<td>Iglane</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Manioc</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Autres tubercules</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Pommes de terre et tubercules (DOM)</td>
</tr>
<tr>
<td>A.1.1.1.2</td>
<td>Racines, tubercules</td>
<td>Agreste - SAA02</td>
<td>Racines, bulbes et tubercules</td>
<td>Ail (en vert)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Ail (en sec)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Betteraves potagères</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Carottes</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Céleris raves</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Échalotes</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Navets potagers</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Oignons blancs</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Oignons de couleur</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Radis</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Salsifs et scorsonères</td>
</tr>
<tr>
<td>A.1.1.3</td>
<td>Cultures sucrières</td>
<td>Agreste - SAA02</td>
<td>Betteraves industrielles et canne à sucre</td>
<td>Betteraves industrielles</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Canne à sucre</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Apiculture</td>
<td>Miel</td>
</tr>
</tbody>
</table>

Sources : Alterre Bourgogne, Mydiane, 2013
<table>
<thead>
<tr>
<th>Code MFA niveau 4</th>
<th>Libel FR</th>
<th>Source</th>
<th>Thème/Sous-thème</th>
<th>Désignation/Produit/Libellé</th>
</tr>
</thead>
<tbody>
<tr>
<td>A.1.1.4</td>
<td>Légumineuses</td>
<td>Agreste - SAA02</td>
<td>Protéagineux</td>
<td>Féveroles et fèves</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Pois protéagineux</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Lupin doux</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Légumes à cosse</td>
<td>Haricots à écosser et demi-secs (grain)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Haricots verts (y c. haricots beurre)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Autres légumes frais</td>
<td>Maïs doux</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Légumes secs</td>
<td>Haricots secs (y compris semences)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Lentilles (y compris semences)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Pois secs (pois de casserolle)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>(y compris semences)</td>
</tr>
<tr>
<td>A.1.1.5</td>
<td>Noix</td>
<td>Agreste - SAA03</td>
<td>Fruits à coque</td>
<td>Amandes</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Châtaignes</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Noix</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Noisettes</td>
</tr>
<tr>
<td>A.1.1.6</td>
<td>Cultures oléagineuses</td>
<td>Agreste - SAA02</td>
<td>Oléagineux</td>
<td>Colza et navette</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Tournesol</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Soja</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Lin oléagineux</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Autres oléagineux</td>
</tr>
<tr>
<td>A.1.1.7</td>
<td>Légumes</td>
<td>Agreste - SAA02</td>
<td>Légumes feuillus et à tige</td>
<td>Artichauts</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Asperges en production</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Céleris branches</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Choux-fleurs</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Choux brocolis à jets</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Choux de Bruxelles</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Choux à choucroute</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Choux autres</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Endives racines</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Endives chicons</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Épinards</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Poireaux</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Laitues</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Chicorées frisées</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Chicorées scaroles</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Cresson</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Mâche</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Autres salades</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Bettes et cardes</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Persil</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Légumes cultivés pour le fruit</td>
<td>Aubergines</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Concombres</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Cornichons</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Courgettes</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Poivrons et piments</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Potirons, courges, citrouilles, giraumon</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Tomates</td>
</tr>
</tbody>
</table>

Sources : Alterre Bourgogne, Mydiane, 2013
<table>
<thead>
<tr>
<th>Code MFA niveau 4</th>
<th>Libel FR</th>
<th>Source</th>
<th>Thème/Sous-thème</th>
<th>Désignation/Produit/Libellé</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Agreste - SAA02</td>
<td>Légumes cultivés pour le fruit</td>
<td>Fraises</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Melons</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Pastèques</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fruits à noyau</td>
<td></td>
<td>Abricots</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Bigarreaux</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Griottes et autres cerises</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Pavies</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Péches</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Nectarines et brugnons</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Prunes à pruneaux</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Mirabelles</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Reines-claudes</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Quetsches</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Autres prunes</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Olives (pour la bouche et à huile)</td>
</tr>
<tr>
<td>A.1.1.8</td>
<td>Fruits</td>
<td>Agreste - SAA03</td>
<td>Fruits à pépins</td>
<td>Pommes à cidre</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Jules Guyot</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>William’s</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Autres poires d’été</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Poires d’automne</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Poires d’hiver</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Pommes Golden</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Granny Smith</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Autres pommes</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Baies</td>
<td></td>
<td>Actinidia (Kiwi)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Cassis et myrtilles</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Framboises</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Grosses</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Fruits divers</td>
<td></td>
<td>Avocats</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Figs</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Agrumes</td>
<td></td>
<td>Clémentines, mandarines</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Pamplemousses</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Agreste - SAA05</td>
<td>Vignoble</td>
<td>Vignes à raisin de table</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Vignes à raisin de cuve</td>
</tr>
<tr>
<td>A.1.1.9</td>
<td>Fibres</td>
<td>Agreste - SAA02</td>
<td>Plantes à fibres</td>
<td>Chanvre papier (paille et graine) (y compris semences)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Lin textile (roui non battu) (y compris semences)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Autres plantes textiles (chanvre) (y compris semences)</td>
</tr>
</tbody>
</table>

Sources : Alterre Bourgogne, Mydiane, 2013
<table>
<thead>
<tr>
<th>Code MFA niveau 4</th>
<th>Libel FR</th>
<th>Source</th>
<th>Thème/Sous-thème</th>
<th>Désignation/Produit/Libellé</th>
</tr>
</thead>
<tbody>
<tr>
<td>A.1.1.10</td>
<td>Autres cultures n.c.a.</td>
<td>Agreste - SAA02</td>
<td>Jachères industrielles et cultures énergétiques</td>
<td>Blé non alimentaire</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Mais non alimentaire</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Colza non alimentaire</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Tournesol non alimentaire</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Betteraves non alimentaires</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Autres cultures non alimentaires</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Cultures industrielles diverses</td>
<td>Tabac Brun</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Tabac Virginie</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Tabac Burley</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Houblon non en production</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Houblon en production</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Chicorée à café (racines)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Autres cultures industrielles</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Plantes aromatiques, médicinales et à parfum</td>
<td>Povot médical (oeillette)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Lavande (en kg d’essence)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Lavandin (en kg d’essence)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Autres plantes aromatiques, médicinales et à parfum</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Champignons et truffes</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Champignons cultivés</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Agreste - SAA04</td>
<td>Cultures florales</td>
<td>Truffes</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Fleurs et feuillages coupés</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Plantes en pots fleuries et plantes vertes</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Plantes à massif en arrachés ou en mottes et plantes vivaces</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Bulbiculture (bulbe, oignon, tubercule, rhizome, griffe)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Pépinières florales</td>
<td></td>
</tr>
<tr>
<td>A.1.2</td>
<td>Résidus de récolte (utilisés) cultures fourragères et pâturages</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A.1.2.1</td>
<td>Résidus de récolte (utilisés) cultures fourragères et pâturages</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A.1.2.1.1</td>
<td>Paille</td>
<td>Agreste + estimation</td>
<td>Pailles de céréales</td>
<td>Pailles de céréales</td>
</tr>
<tr>
<td>A.1.2.1.2</td>
<td>Autres résidus de récolte (sucre et feuilles de betteraves fourragères, autres)</td>
<td>À estimer à partir de Saa</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A.1.2.2</td>
<td>Cultures fourragères et pâturages</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A.1.2.2.1</td>
<td>Cultures fourragères (y compris foin récolté)</td>
<td>Agreste - SAA02</td>
<td>Choux, racines et tubercules fourragers</td>
<td>Choux fourragers</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Autres racines ou tubercules fourragers</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Fourrages annuels</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Prairies non permanentes et surfaces toujours en herbe</td>
<td>Prairies artificielles</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Prairies temporaires</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Prairies naturelles ou semées depuis plus de 6 ans</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>STH peu productives (parcours, landes, alpages)</td>
<td></td>
</tr>
</tbody>
</table>

Sources : Alterre Bourgogne, Mydiane, 2013
Pour renseigner les lignes A.1.1 à A.1.10 de la nomenclature

Données sur les productions agricoles
À noter, la production de miel est comptabilisée en 1.1.3 « Cultures sucrières ».

Données sur les jardins et vergers familiaux
Elles sont fournies par le SSP dans le cadre du recensement général agricole. L’Insee fournit sur son site Internet une donnee issue de la statistique agricole sur l’occupation du sol à l’échelle départementale, dont il est possible d’extraire la superficie en hectare des jardins et vergers familiaux. La distinction entre jardins et vergers n’est cependant pas faite. Il faut par ailleurs estimer leur rendement pour obtenir une donnée de production. À défaut, le rendement moyen départemental ou régional des cultures légumières, fourni par la statistique agricole annuelle peut être utilisé. Cependant, ce rendement est sans doute surestimé car il porte sur des productions de maraîchage productives.
À noter, la production de miel est comptabilisée en 1.1.3 « Cultures sucrières ».

Pour renseigner les lignes A.1.2.1.1 à A.1.2.1.2 de la nomenclature

Données sur les résidus de récolte
La statistique agricole annuelle (SAA) indique une production de paille de céréales obtenue en appliquant un coefficient à la quantité de céréales récoltées par espèce, sans préjuger de la destination : broyée lors de la récolte, autoconsommée ou vendue. À défaut d’autres informations des taux moyens d’utilisation de la paille pour estimer la part utilisée pour l’économie peuvent être appliqués à ces données. Ces taux moyens d’utilisation sont fournis dans le guide d’Eurostat et se présentent de la façon suivante :

<table>
<thead>
<tr>
<th>Type de culture</th>
<th>Taux de récupération</th>
</tr>
</thead>
<tbody>
<tr>
<td>Blé</td>
<td>0,7</td>
</tr>
<tr>
<td>Orge</td>
<td>0,7</td>
</tr>
<tr>
<td>Avoine</td>
<td>0,7</td>
</tr>
<tr>
<td>Seigle</td>
<td>0,7</td>
</tr>
<tr>
<td>Maïs</td>
<td>0,9</td>
</tr>
<tr>
<td>Riz</td>
<td>0,7</td>
</tr>
<tr>
<td>Autres céréales</td>
<td>0,7</td>
</tr>
<tr>
<td>Graine de colza</td>
<td>0,7</td>
</tr>
<tr>
<td>Soja</td>
<td>0,7</td>
</tr>
<tr>
<td>Betteraves sucrières</td>
<td>0,9</td>
</tr>
<tr>
<td>Canne à sucre</td>
<td>0,9</td>
</tr>
</tbody>
</table>

Source : Guide Eurostat, 2009

La quantité de paille produite par type de culture n’est pas diffusée sur le site Internet du Service de la statistique et de la prospective (SSP) du ministère de l’Agriculture, mais est disponible auprès des Dreal. Il est nécessaire d’obtenir ce détail afin de pouvoir appliquer les taux de récupération par type de cultures.
Pour ce qui concerne les pailles de maïs, de colza et de tournesol, elles sont dans la plupart des cas broyées au champ pour un retour au sol. Ces résidus ne sont donc pas à comptabiliser dans l’extraction locale utilisée. Des différences de pratique peuvent toutefois exister d’un territoire à l’autre.
Les autres résidus de récolte sont principalement les collets et feuilles de betteraves à sucre. Selon la Confédération générale des planteurs de betteraves, le planteur livre au sucrier la racine avec le collet. Pour ce qui concerne les feuilles, celles-ci sont coupées lors de la récolte et laissées au champ pour être réintroduites ensuite dans le sol. Il s’agit toutefois de vérifier localement que les feuilles et le collet ne sont pas consommés par le bétail, ce qui impliquerait alors de les comptabiliser dans les résidus de récolte utilisés. Dans ce cas, les données de production de betteraves sucrières indiquées dans les statistiques agricoles seront utilisées. Ces données correspondent en principe à la production payée au planteur. Pour avoir le poids racine et collet, il faut ajouter 10 % aux statistiques agricoles qui a priori ne comprennent que la racine payée au planteur. Les feuilles représentent 60 % de la masse racine et collet. Si la racine avec le collet fait 1, alors la plante entière avec feuilles fait 1,6.

Pour renseigner les lignes A.1.2.2.1 à A.1.2.2.2 de la nomenclature

Données sur les pâturages et les cultures fourragères :
Elles sont fournies par la statistique agricole annuelle. Elles sont exprimées en matières sèches.
Attention à bien utiliser les tableaux de la statistique agricole :
- le chiffre des « Prairies non permanentes » et « Surfaces toujours en herbe » (STH) est la somme des prairies artificielles + prairies temporaires + surfaces toujours en herbe ;
- le chiffre des « Surfaces toujours en herbe » est la somme des « Prairies naturelles ou semées depuis plus de 6 ans » + STH peu productives.
À noter : les données fournies par la statistique agricole annuelle pour les pâturages ont tendance à surestimer les résultats dans la mesure où les quantités d’herbe broutée par les animaux sont calculées à partir des surfaces de prairie auxquelles sont appliqués des coefficients de besoins grossiers des animaux.
Périmètre

La biomasse issue de la sylviculture correspond aux récoltes de bois d’œuvre, de bois d’industrie et de bois énergie, que la récolte de bois soit issue de forêts ou de plantations à courte rotation ou de terres agricoles.

Le bois d’œuvre est constitué de grumes destinées à être sciées ou débitées, pour des usages en menuiserie, charpente, emballages, ameublement. Toute exploitation de bois d’œuvre se traduit par :
- l’apparition de rémanents en forêt (houppiers, branches, éléments détériorés ou mal conformés) ;
- la production en usine de produits connexes (chutes, sciures...).

Le bois d’industrie est ainsi constitué de bois rémanents issus de l’exploitation de bois d’œuvre ainsi que des petits arbres prélevés dans les coupes d’éclaircies, de produits connexes de scierie, de broyat de bois de rebut. Les utilisateurs du bois d’industrie sont principalement les industries de la pâte à papier, des panneaux, et la fabrication de poteaux.

Le bois énergie est issu du même type de ressource que le bois d’industrie. Il correspond à l’usage du bois pour le chauffage, que ce soit par :
- les ménages : il s’agit alors en très grande majorité d’un usage sous forme de bûches, et dans une faible mesure sous forme de plaquettes ou de granulés ;
- les chaufferies collectives (équipements communaux, logements collectifs...) ou urbaines (réseaux de chaleur urbains), alimentées de façon automatisée par des déchets de bois ;
- l’industrie : il s’agit principalement des industries du bois et du papier-carton qui auto consomment les sous-produits qu’elles génèrent.

Les unités de mesure

Les quantités de bois récoltées sont généralement exprimées en volume (m³ ou stères), plutôt qu’en poids. Un stère est considéré comme égal à 0,70 m³. Ces mesures de volume doivent être converties en mesures de poids. Le SSP propose des taux de conversion détaillés par essence :

| Tableau 2.3 : unités de mesure pour le bois |
|-----------------|-----------------|
| Essence | 1 m³ sur écorce = | 1 stère sur écorce = |
| Feuillus durs | 1 tonne brute | 0,59 tonne brute |
| Feuillus tendres| 0,79 tonne brute | 0,50 tonne brute |
| Sapin-épicéa | 0,79 tonne brute | 0,53 tonne brute |
| Douglas, mélèze | 0,71 tonne brute | 0,59 tonne brute |
| Pin maritime | 0,88 tonne brute | 0,51 tonne brute |
| Autres conifères| 0,85 tonne brute | 0,51 tonne brute |

Source : « Méthodologie - Récolte de bois et production de sciages en 2008 », Agreste, Chiffres et Données Agroalimentaire, n° 170

Les taux de conversion proposés par Eurostat (guide 2009) sont détaillés seulement en distinguant les feuillus et les conifères. Ils sont les suivants pour le bois sous écorce :

| Tableau 2.4 : facteurs standards pour convertir les quantités indiquées en volume (m³) en poids (à 15 % d’humidité) |
|-----------------|-----------------|
| Essence | Densité en tonne par m³ (bois à 15 % d’humidité) |
| Conifères | 0,52 |
| Feuillus | 0,68 |

Source : Guide Eurostat, 2009

En l’absence d’informations sur l’essence du bois (feuillus ou conifères), un coefficient moyen de 0,60 tonne/m³ peut être retenu, notamment pour le bois d’industrie.

Taux d’humidité

Bois sur écorce

Des précautions particulières doivent être prises en ce qui concerne la question de l’écorce, qui représente environ 10 % du poids du bois de tige. Dans le cas où les quantités de bois récolté sont indiquées sous écorce (soit sans l’écorce), il faut utiliser un facteur d’extension, à savoir un coefficient multiplicateur de 1,1 pour corriger les valeurs.

Dans le cas où les données de récolte détaillées par essence sont disponibles, le SSP propose des taux d’écorce par essence :

| Tableau 2.5 : taux d’écorce |
|-----------------|-----------------|
| Essence | Taux d’écorce |
| Chêne | 0,14 |
| Hêtre | 0,06 |
| Sapin | 0,12 |
| Épicéa | 0,1 |
| Pin maritime | 0,15 |
| Pin Sylvestre | 0,25 |
| Douglas | 0,13 |
| Mélèze | 0,18 |

Source : « Méthodologie - Récolte de bois et production de sciages en 2008 », Agreste, Chiffres et Données Agroalimentaire, n° 170

Fiche 1.2. La biomasse issue de la sylviculture
Les statistiques du Service de la statistique et de la prospective (SSP) du ministère de l’Agriculture fournissent la récolte de bois en volume à l’échelle départementale, en détaillant ses usages : bois d’œuvre, bois d’industrie, bois énergie.

Les quantités de bois sont exprimées en m³ de bois rond sur écorce.

Il n’est donc pas nécessaire de corriger les valeurs par un facteur d’extension pour passer de valeurs sous écorce à des valeurs sur écorce.

Il faut en revanche les convertir en tonnes. Il conviendra d’appliquer les taux de conversion fournis par le SSP ou bien ceux proposés par Eurostat (paragraphe Les unités de mesure) pour le bois sous écorce1.

Pour renseigner la ligne A.1.3.1 de la nomenclature

Les données de la statistique agricole fournie par le Service de la statistique et de la prospective (SSP) du ministère de l’Agriculture concernent :

- la récolte de bois d’œuvre : grumes de feuillus et de conifères ;
- la récolte de bois d’industrie : principalement le bois de trituration ;
- la récolte de bois d’industrie : autres bois d’industrie.

Pour renseigner la ligne A.1.3.2 de la nomenclature

La statistique du Service de la statistique et de la prospective (SSP) du ministère de l’Agriculture présente les catégories suivantes concernant le bois-énergie :

- bois-énergie commercialisé : bois bûche ;
- bois-énergie commercialisé : plaquettes forestières ;
- bois-énergie cédé à titre gratuit ;
- bois rond pour la carbonisation.

La ligne « Bois énergie cédé à titre gratuit » prend cependant en compte de façon très imparfaite le bois de chauffage autoproduit et autoconsommé par les ménages et n’intègre pas le bois commercialisé de façon illégale. Or, ce bois représente des quantités très importantes. Pour donner un ordre de grandeur, les quantités de bois de chauffage autoconsommés ou ne passant pas par des circuits officiels ont été estimées pour la région Bourgogne à près de quatre fois les quantités commercialisées officiellement.

Il est donc important d’estimer le bois de chauffage autoproduit et autoconsommé ou commercialisé de façon non officielle à partir d’autres sources.

Il est possible de départementaliser grossièrement les résultats en fonction de la part de résidences principales chauffées au bois par département. La dernière donnée sur le nombre de résidences principales chauffées au bois date du recensement général de la population réalisé par l’Insee pour l’année 1999. En effet, dans les recensements de la population suivants, le bois est regroupé avec d’autres énergies.

La donnée issue du SOeS comprend ainsi l’ensemble des consommations de bois par les ménages, que le bois ait été commercialisé officiellement ou non ou autoconsommé. Cette donnée peut remplacer la donnée de la statistique agricole concernant le bois-énergie. Il est cependant bon d’y ajouter la ligne « Bois commercialisé sous forme de plaquettes » car ce type de combustibles est peu utilisé par les ménages mais sert aux chaufferies collectives dans le tertiaire ou aux chaufferies industrielles. De même, les quantités de bois utilisé pour la fabrication du charbon de bois (bois de carbonisation) ne sont pas comprises dans la consommation de bois de chauffage des ménages. Ainsi :

Total récolte bois énergie = consommation de bois de chauffage des ménages (données SOeS) + bois énergie commercialisé sous forme de plaquettes (données de la statistique agricole du Service de la statistique et de la prospective – SSDP – du ministère de l’Agriculture) + bois rond pour la carbonisation (données du Service de la statistique et de la prospective (SSP) du ministère de l’Agriculture)

1 On pourra considérer comme négligeable l’erreur introduite par l’épaisseur de l’écorce.

Tableau 2.6 : nomenclature pour la biomasse issue de la sylviculture

<table>
<thead>
<tr>
<th>Code MFA niveau 4</th>
<th>Libel EN</th>
<th>Libel FR</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>A.1.3</td>
<td>Wood</td>
<td>Bois</td>
<td>EXF</td>
</tr>
<tr>
<td>A.1.3.1</td>
<td>Timber (Industrial roundwood)</td>
<td>Bois (bois rond industriel)</td>
<td>EXF Grumes de feuillus</td>
</tr>
<tr>
<td>A.1.3.2</td>
<td>Wood fuel and other extraction</td>
<td>Bois énergie et autres extractions</td>
<td>EXF Grumes de conifères</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>EXF Bois de trituration de feuillus</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>EXF Bois de trituration de conifères</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>EXF Autres bois d’industrie</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>EXF Bois énergie</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Ceren + estimation Bois de chauffage non déclaré – consommation des logements hors statistiques</td>
</tr>
</tbody>
</table>

Sources : Eurostat 2009, Allerne Bourgogne, Mydis, 2013
Lorsqu’il est ainsi possible de connaître les exportations de bois de chauffage (bois bûches) en dehors du territoire, ces quantités peuvent être ajoutées au total récolte bois-énergie obtenu précédemment, puisqu’il s’agit bien de quantités extraites du territoire. De même, les quantités de bois de chauffage (bois bûches) importées pour répondre aux besoins des ménages pourront être soustraites, car non récoltées sur le territoire.

À noter : la base de données SitraM qui comptabilise les importations et exportations du territoire* (fiche 3) ne peut pas être utilisée, car celle-ci ne distingue pas le bois bûche des autres formes.

À noter : les données de l’étude Ceren sont exprimées en une unité de volume, qui est le stère. Les données du SOeS sont exprimées en une unité d’équivalence énergétique, qui est la tonne équivalent pétrole (tep). Les facteurs de conversion suivants peuvent être utilisés : 1 stère = 0,147 tep = 0,5 tonne.

Accroissement net du stock de bois sur pied

La méthodologie Eurostat propose d’estimer également l’accroissement net de bois sur pied. Cette information n’entre pas dans la comptabilisation des flux de matières. Il s’agit d’une information complémentaire qui apporte un éclairage sur le niveau de ponction sur la ressource en bois.

Selon la méthodologie d’Eurostat, l’accroissement net du bois sur pied correspond à l’augmentation du stock de bois après récolte. Si la récolte a été supérieure à l’accroissement de la forêt, alors le stock de bois sur pied décroît (le chiffre est négatif). Dans le cas contraire, il est positif, ce qui est globalement le cas pour la forêt française. L’analyse de l’Inventaire forestier national (IFN), service de l’Institut national de l’information géographique et forestière (IGN), indique ainsi que « Le capital de bois sur pied dans la forêt française s’est accru de 650 millions de mètres cubes dans le dernier quart de siècle ». L’IFN indique également que cette augmentation « ne s’applique pas partout uniformément : elle est variable selon la zone géographique, la classe de propriété, la dimension des bois et les essences. Elle est aussi largement affectée par les conséquences des tempêtes de 1999 et 2009, lesquelles se combinent avec la dynamique d’expansion pour déplacer la localisation des ressources en bois des régions forestières traditionnelles du Nord-Est et du Sud-Ouest vers d’autres régions (Bourgogne, Massif central, Midi-Pyrénées notamment) ».

L’Inventaire national forestier fournit la variation annuelle du stock de bois sur pied en m³ à l’échelle régionale. Une répartition par département peut être réalisée en appliquant la part des surfaces de forêt dans les départements (source : Service de la statistique et de la prospective – SSP – du ministère de l’Agriculture). À défaut de répartition par essence, le coefficient moyen de 0,6 tonne/m³ pour le passage du volume au tonnage peut être utilisé.

La récolte en tonne par département est soustraitre à cette variation annuelle du stock de bois sur pied pour obtenir l’accroissement net du bois sur pied.
Fiche 1.3. La biomasse aquatique

Périmètre

La biomasse aquatique comprend la capture du poisson et l’extraction d’animaux ou de plantes aquatiques.

Cela ne comprend pas : les ressources aquatiques considérées comme cultivées (ostréiculture, pisciculture, algoculture, etc.).

Mais cela comprend : l’extraction de toute la biomasse aquatique sauvage (non cultivée) : poissons, crustacés, coquillages, céphalopodes, algues, etc.

Les quantités de biomasse extraites par les bateaux français et débarquées en France sont comptabilisées. Faute d’informations statistiques suffisantes, les quantités de biomasse extraites par les bateaux français et débarquées hors de France ne sont pas prises en considération, comme c’est le cas au niveau de la comptabilité nationale des flux de matières.

La méthodologie Eurostat ne prend en compte que la pêche professionnelle. L’estimation du volume prélevé par la pêche de loisir en cours d’eau ou plans d’eau peut, dans certains cas, présenter un intérêt local, même si ce volume est faible.

Nomenclature et source des données

<table>
<thead>
<tr>
<th>Code MFA niveau 4</th>
<th>Libel EN</th>
<th>Libel FR</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>A.1.4.0</td>
<td>Wild fish catch, aquatic plants/animals, hunting and gathering</td>
<td>Capture du poisson, animaux aquatiques et plantes, chasse et cueillette</td>
<td>FranceAgriMer</td>
</tr>
<tr>
<td>A.1.4.1</td>
<td>Wild fish catch</td>
<td>Capture du poisson</td>
<td>FranceAgriMer</td>
</tr>
<tr>
<td>A.1.4.2</td>
<td>All other aquatic animals and plants</td>
<td>Autres animaux et plantes aquatiques</td>
<td>FranceAgriMer et Chambre syndicale des algues et des végétaux marins</td>
</tr>
</tbody>
</table>

Sources : Eurostat 2009, Alterre Bourgogne, Mydiane, 2013

Pour renseigner les lignes A.1.4.1 à A.1.4.2 de la nomenclature

Pour ce qui concerne la production d’algues, la Chambre syndicale des algues et des végétaux marins pourrait disposer des quantités d’algues et de plantes de bord de mer transformées par les entreprises qu’elle regroupe. Cette organisation professionnelle regroupe les entreprises de valorisation et de transformation des algues et plantes de bord de mer (http://www.chambre-syndicale-algues.org).

D’après le numéro 9 de *La filière macro-algues en France*, des publications du pôle halieutique Agrocampus Ouest : « La production française d’algues est estimée à 70 000 tonnes récoltées annuellement. Les algues sauvages représentent la majeure partie de la production, elles sont récoltées en mer, sur l’estran, ou, lorsqu’elles sont échouées, sur le rivage. En France, les algues sauvages sont principalement récoltées le long des côtes bretonnes. Seules 50 tonnes d’algues proviennent de l’algoculture ». La publication détaille les zones de production d’algues en France, ainsi que la production en Bretagne, d’après la Chambre syndicale des algues et végétaux marins et l’Institut français de recherche pour l’exploitation de la mer (Ifremer).
Références | juin 2014 | Comptabilité des flux de matières dans les régions et les départements

Fiche 1.4. La biomasse issue de la chasse et de la cueillette

Périmètre

La biomasse issue de la chasse et de la cueillette comprend la chasse d’animaux sauvages, autres que les animaux aquatiques, et la cueillette de cultures et plantes sauvages.

La chasse comprend la chasse et le piégeage d’animaux pour l’alimentation, pour leur fourrure et peau, à des fins de recherche, pour des zoos ou pour utilisation comme animaux de compagnie. L’élevage de gibier est exclu.

La cueillette comprend la cueillette de champignons non cultivés, de truffes, de baies, etc.

Nomenclature et source des données

Pour renseigner la ligne A.1.5 de la nomenclature

Les données sur la chasse peuvent être fournies à l’échelle départementale par les Fédérations départementales des chasseurs, ou par les bureaux chasse des Directions départementales des territoires (DDT). Les données de prélèvements sont connues pour toutes les espèces soumises à un plan de chasse en France, à savoir : le cerf, le chevreuil, le mouflon et le daim. Selon les départements, d’autres espèces peuvent également être soumises à un plan de chasse sur décision du préfet. Certaines espèces peuvent également faire l’objet d’un suivi sans être soumise à un plan de chasse.

Les données concernant la cueillette existent seulement pour certains pays européens qui les intègrent dans les statistiques sur les cultures agricoles. Ce n’est pas le cas pour la France.

La biomasse issue de la cueillette n’est pas comptabilisée dans l’AFM nationale.
Périmètre

Les minerais métalliques comprennent les minerais ferreux et non ferreux (cuivre, nickel, zinc...).

Nomenclature et source des données

<table>
<thead>
<tr>
<th>Code MFA niveau 4</th>
<th>Libellé EN</th>
<th>Libellé FR</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>A.2.0.0</td>
<td>Metal ores (gross ores)</td>
<td>Minerais métalliques (minerais bruts)</td>
<td>Dreal - service prévention des risques - mines et carrières</td>
</tr>
<tr>
<td>A.2.1.0</td>
<td>Iron</td>
<td>Fer</td>
<td></td>
</tr>
<tr>
<td>A.2.2.0</td>
<td>Non-ferrous metal</td>
<td>Métaux non ferreux</td>
<td></td>
</tr>
<tr>
<td>A.2.2.1</td>
<td>Copper</td>
<td>Cuivre</td>
<td></td>
</tr>
<tr>
<td>A.2.2.2</td>
<td>Nickel</td>
<td>Nickel</td>
<td></td>
</tr>
<tr>
<td>A.2.2.3</td>
<td>Lead</td>
<td>Plomb</td>
<td></td>
</tr>
<tr>
<td>A.2.2.4</td>
<td>Zinc</td>
<td>Zinc</td>
<td></td>
</tr>
<tr>
<td>A.2.2.5</td>
<td>Tin</td>
<td>Étain</td>
<td></td>
</tr>
<tr>
<td>A.2.2.6</td>
<td>Gold, silver, platinum and other precious metals</td>
<td>Or, argent, platine et autres métaux précieux</td>
<td></td>
</tr>
<tr>
<td>A.2.2.7</td>
<td>Bauxite and other aluminium</td>
<td>Bauxite et autres minerais d’aluminium</td>
<td></td>
</tr>
<tr>
<td>A.2.2.8</td>
<td>Uranium and thorium</td>
<td>Uranium et thorium</td>
<td></td>
</tr>
<tr>
<td>A.2.2.9</td>
<td>Other n.e.c.</td>
<td>Autres n.c.a.</td>
<td></td>
</tr>
</tbody>
</table>

Sources : Eurostat 2009, Alterre Bourgogne, Mydiane, 2013

Pour renseigner les lignes A.2.1.0 à A.2.2.9 de la nomenclature

Pour les territoires de la métropole et les DOM-ROM, le service mines et carrières des Dreal permet de s’assurer de l’existence ou non de production de minerais métalliques sur le territoire. La recherche de données peut cependant dans certains cas nécessiter l’identification de l’entreprise exploitante et une prise de contact directe.

Pour les départements et régions d’outre-mer et la Nouvelle-Calédonie, les statistiques nationales ne sont pas exploitables. Il est alors nécessaire de se tourner vers des sources d’informations locales. Les quantités de minerais extraites sont souvent exprimées en quantités de métal pur. Il est alors nécessaire de les traduire en quantités de minerai brut. Il faut pour cela avoir connaissance de la teneur en métal du minerai brut spécifique. Cette teneur est variable selon les minerais et les mines. Un aperçu de la teneur du minerai de différents métaux (dans les pays européens) est fourni dans le guide Eurostat 2009 (page 44, tableau 10) ainsi qu’un mode de calcul pour passer de la quantité de métal à la quantité de minerai brut. Il est cependant vivement conseillé de collecter cette information localement, car elle peut varier de façon importante d’un gisement à l’autre.
Fiche 1.6. Les minéraux non métalliques

Périmètre

Les minéraux non métalliques comprennent :
- les minéraux pour la construction, qui représentent la plus grande part de l’extraction intérieure de minéraux. Il s’agit en grande partie de graviers et sables destinés à la construction (plus de 90% de la masse des matériaux de construction à l’échelle nationale), de pierres ornementales (marbre, granit, etc.) ou encore de calcaire, gypse, ardoise, etc. ;
- les minéraux industriels. Il s’agit notamment des minéraux d’engrais chimiques, du sel ou d’autres produits d’extraction tels que le graphite naturel, le quartz, le mica, etc.

Nomenclature et source des données

<table>
<thead>
<tr>
<th>Code MFA niveau 4</th>
<th>Libel EN</th>
<th>Libel FR</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>A.3.0.0</td>
<td>Non-metallic minerals</td>
<td>Minéraux non métalliques</td>
<td>Dreal (base S3IC)</td>
</tr>
<tr>
<td>A.3.1.0</td>
<td>Marble, granite, sandstone, porphyry, basalt, other ornamental or building stone (excluding slate)</td>
<td>Marbre, granit, grès, porphyre, basalte, autres pierres ornementales ou de construction (sauf ardoise)</td>
<td>Roches massives : autres</td>
</tr>
<tr>
<td>A.3.2.0</td>
<td>Chalk and dolomite</td>
<td>Craie et dolomie</td>
<td>Craie et dolomie</td>
</tr>
<tr>
<td>A.3.3.0</td>
<td>Slate</td>
<td>Ardoise</td>
<td>Ardoise</td>
</tr>
<tr>
<td>A.3.4.0</td>
<td>Chemical and fertilizer minerals</td>
<td>Minéraux d’engrais chimiques</td>
<td>Minéraux d’engrais chimiques</td>
</tr>
<tr>
<td>A.3.5.0</td>
<td>Salt</td>
<td>Sel</td>
<td>Sel</td>
</tr>
<tr>
<td>A.3.6.0</td>
<td>Limestone and gypsum</td>
<td>Calcaire et gypse</td>
<td>Roches massives : calcaire</td>
</tr>
<tr>
<td>A.3.7.0</td>
<td>Clays and kaolin</td>
<td>Argiles et kaolin</td>
<td>Autres : argiles</td>
</tr>
<tr>
<td>A.3.8.0</td>
<td>Sand and gravel</td>
<td>Sable et gravier</td>
<td>Alluvionnaires (ALEAU) et Alluvionnaires (ALSEC)</td>
</tr>
<tr>
<td>A.3.9.0</td>
<td>Other n.e.c.</td>
<td>Autres n.c.a.</td>
<td>Autres : autres</td>
</tr>
<tr>
<td>A.3.10.0</td>
<td>Excavated earthen materials (including soil), only if used</td>
<td>Matériaux terreaux d’excavation (y compris couche de surface), seulement si utilisés</td>
<td></td>
</tr>
</tbody>
</table>
Pour renseigner les lignes A.3.1.0 à A.3.9.0 de la nomenclature

À l’échelle régionale, les Directions régionales de l’environnement, de l’aménagement et du logement (Dreal) disposent de la base S3IC (anciennement GIDIC) qui fournit des données sur les quantités produites par type de matériaux.

La typologie des données qui peuvent être extraites est la suivante :

<table>
<thead>
<tr>
<th>Type de matériaux</th>
<th>Nombre de carrières</th>
<th>Quantités produites (tonnes)</th>
<th>Usage agricole</th>
<th>Fabrication béton</th>
<th>Usage industriel</th>
<th>Pierres ornementales de construction</th>
<th>Viabilité</th>
<th>Divers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Roches massives</td>
<td>calcaire</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>autre</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alluvionnaires</td>
<td>aleau</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>absec</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Autres matériaux</td>
<td>argile</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>autre</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>total</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Ces informations doivent être ventilées selon la nomenclature d’Eurostat. Pour ce faire, il est parfois nécessaire de demander un niveau de détail supérieur auprès des Dreal, afin de connaître plus précisément les types de matériaux produits.

L’Union nationale des industries de carrières et matériaux de construction (Unicem) est la fédération qui regroupe la quasi-totalité des industries extractives de minéraux ainsi que les fabricants de divers matériaux de construction (bétons, mortiers, plâtre...). Elle regroupe 19 unions régionales qui peuvent fournir des informations actualisées sur les quantités extraites, et dans certains cas à différentes échelles de territoire (région, département, infra-département).

Pour renseigner les lignes A.3.10.0 de la nomenclature

Cette ligne n’est pas renseignée au niveau national.

Sources : Alterre Bourgogne, Mydiane, 2013
En 2010, la production nationale de gaz naturel, qui représente actuellement moins de 2 % de la consommation intérieure, provient à 96 % du bassin d’Aquitaine et à 4 % de gaz de mine extrait dans le Nord-Pas-de-Calais. Le principal gisement de gaz naturel (Lacq) est quasiment épuisé, si bien que le gaz naturel extrait du sol national représente, en 2010, de l’ordre de 2 % de la consommation nationale.

Règle de comptabilisation

Selon les conventions de l’AFM, seules les ressources pétrolières extraites sans matière inerte sont prises en considération. Les fraccations de pétrole brut ou de gaz naturel réinjecté ou brûlé sont considérées comme des extractions inutilisées et non comptabilisées en extraction intérieure. Les ressources pétrolières utilisées dans les industries d’extraction doivent être incluses.

Périmètre

Les combustibles fossiles comprennent, d’une part le charbon et autres combustibles minéraux solides : lignite, houille, schistes et sables bitumineux, tourbe ; et d’autre part, les produits pétroliers liquides et gazeux : pétrole brut, gaz naturel liquide, gaz naturel. Les produits de récupération sont pris en compte. Il s’agit notamment des résidus de charbon extrait, mélangés à des impuretés, issus des bassins de décantation et des terrils et faisant l’objet d’une valorisation dans les centrales thermiques.

L’extraction de combustibles fossiles est aujourd’hui très limitée en France. Le charbon n’est plus extrait en France depuis 2005. La production se limite désormais aux seuls produits de récupération (0,3 Mt en 2010) issus des terrils du Nord-Pas-de-Calais et des slams du Bassin lorrain, puis valorisés dans les centrales thermiques.

La production de pétrole se concentre dans le Bassin parisien et le bassin d’Aquitaine, et dans une moindre mesure en Alsace. Elle représente moins d’un million de tonnes en 2010 soit environ 1 % de la consommation nationale de pétrole. Il est à noter que des permis de recherche de champs pétrolifères sont en cours dans certaines régions.

Nomenclature et source des données

Tableau 2.11 : nomenclature pour les combustibles fossiles

<table>
<thead>
<tr>
<th>Code MFA niveau 4</th>
<th>Libel EN</th>
<th>Libel FR</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>A.4</td>
<td>Fossil energy materials/carriers</td>
<td>Matériaux/supports énergétiques fossiles</td>
<td>EIDER ou Dreal (Service prévention des risques - mines et carrières)</td>
</tr>
<tr>
<td>A.4.1</td>
<td>Coal and other solid energy materials/carriers</td>
<td>Charbon et autres matériaux/supports énergétiques solides</td>
<td></td>
</tr>
<tr>
<td>A.4.1.1</td>
<td>Lignite (brown coal)</td>
<td>Lignite</td>
<td></td>
</tr>
<tr>
<td>A.4.1.2</td>
<td>Hard coal</td>
<td>Houille</td>
<td></td>
</tr>
<tr>
<td>A.4.1.3</td>
<td>Oil shale and tar sands</td>
<td>Schistes et sables bitumineux</td>
<td></td>
</tr>
<tr>
<td>A.4.1.4</td>
<td>Peat</td>
<td>Tourbe</td>
<td></td>
</tr>
<tr>
<td>A.4.2</td>
<td>Liquid and gaseous energy materials/carriers</td>
<td>Matériaux/supports pétroliers liquides et gazeux</td>
<td></td>
</tr>
<tr>
<td>A.4.2.1</td>
<td>Crude oil, condensate and natural gas liquids (NGL)</td>
<td>Pétrole brut, condensat et gaz naturel liquides (GNL)</td>
<td></td>
</tr>
<tr>
<td>A.4.2.2</td>
<td>Natural gas</td>
<td>Gaz naturel</td>
<td></td>
</tr>
</tbody>
</table>

Sources : Eurostat 2009, Alterre Bourgogne, Mydiane, 2013

Les données régionales sur la production de combustibles fossiles sont accessibles dans la base de données EIDER, par les tableaux relatifs à la production d’énergie primaire. Sont présentées les productions de charbon (en milliers de tonnes), de pétrole brut (en milliers de tonnes) et de gaz naturel (en GWh).

Les services mines et carrières des Dreal peuvent également fournir ces données, ainsi que des éléments de contexte complémentaires.

À noter : pour convertir les GWh de gaz naturel en tonnes, le facteur de conversion moyen de 1 kt = 1 000 tonnes = 16,6 GWh peut être utilisé.

D’après les éléments de calculs suivants :

1 GWh = 8,6 x 10⁻³ Mtep (PCI)
1 Mtep (PCS) gaz = 778 kt
1 unité PCI = 0,9 unité PCS

Au final, 1 kt = 1/(8,6 x 10⁻³) x 778 x 0,9 = 7 GWh
L’extraction intérieure de matières s’accompagne de pertes ou de déplacements de matières, qui ne sont pas valorisées économiquement. Il s’agit par exemple des terres de découverture des carrières, des résidus de récolte laissés au champ, de l’érosion des terres agricoles, etc.

Ces matières sont mobilisées ou déplacées, lors d’un processus de production, mais ne font pas l’objet d’un échange marchand. Il est cependant important de les comptabiliser dans la mesure où la mobilisation de certains de ces matériaux par l’économie peut avoir des effets sur l’environnement. Par exemple, l’extraction de minerais nécessite l’excavation de grandes quantités de terre qui peut avoir des conséquences sur les sols, la biodiversité ou encore les paysages ; le déplacement de ces matières est en outre à l’origine de consommation d’énergie et des nuisances qui peuvent en résulter.

L’extraction intérieure inutilisée recouvre :
- les extractions inutilisées issues de l’exploitation minière, correspondant à la matière dégagée pour accéder aux combustibles énergétiques ou aux minerais ;
- les résidus de récolte et parties de la plante qui n’ont pas été récoltées et sont restées au champ ;
- les branches et feuilles déposées sur le sol après la coupe d’arbres ;
- le produit de la pêche rejeté en mer ;
- les terres d’excavation, extraites pour faire place aux constructions de logements (maisons, immeubles) et d’infrastructures ;
- les boues de dragage des ports et voies navigables ;
- l’érosion des terres arables.

Remarques concernant le terme « inutilisée »

La nomenclature proposée par Eurostat a retenu le terme « inutilisée ». Celui-ci peut toutefois paraître inapproprié quand il est appliqué à certaines matières, comme les résidus de récoltes agricoles ou sylvicoles. En effet, la paille laissée au champ puis retournée dans le sol, même si elle n’est pas directement valorisée économiquement, présente une valeur agronomique et évite l’utilisation d’engrais. De même, les branchages et feuillages laissés sur le sol après la coupe d’arbres contribuent à maintenir la fertilité des sols. Il est ainsi utile d’en rappeler la valeur, en commentaire des résultats. Par ailleurs, les terres d’excavation ou de découverture peuvent être réutilisées (en remblai sur un autre chantier, pour recouvrir la carrière en fin de vie, etc.). Ce sont toutefois des terres qui ont été extraites et déplacées, avec d’éventuelles conséquences environnementales. Et leur déplacement mobilise de l’énergie.

L’extraction intérieure inutilisée représente une masse équivalente à environ 69 % de l’extraction intérieure utilisée, soit près de 12 tonnes par Bourguignonne. Pour la France, on observe le même rapport entre extraction inutilisée et extraction utilisée. L’extraction intérieure inutilisée est moindre ramenée à la population : de l’ordre de 7 tonnes par habitant.

Les terres excavées lors de travaux de construction ou de l’extraction de minerais (terres de découverture) en représentent près de la moitié, l’érosion des sols 41 %, la biomasse agricole et sylvicole 11 %.

Méthode d’estimation

L’extraction intérieure inutilisée peut être estimée à l’aide de coefficients techniques appliqués aux statistiques physiques des activités concernées (matière extraite ou récoltée, longueur de réseau de transport ou surface de logements construits). Jusqu’à présent, le SOeS s’appuyait exclusivement sur des coefficients élaborés par le Wuppertal Institut für Klima, Umwelt, Energie GmbH à partir de la situation allemande (AEE, 2001).

Seuls 40 % des quelques 130 matières extractibles recensées ont cependant un coefficient technique. Cela peut induire une possible sous-estimation de la part non utilisée de l’extraction domestique. Le SOeS a fait réaliser des travaux complémentaires dans le but d’affiner la connaissance de ces flux cachés. Les coefficients disponibles pour la France sont disponibles auprès du SOeS.

Le produit de la pêche rejeté en mer

Il s’agit de poissons trop petits capturés et rejettés morts à la mer. Ces rejets de pêche représentent des quantités importantes. En France, le SOeS les estime à un tiers des quantités commercialisées (fiche 1.3. La biomasse aquatique).
Les terres d’excavation

L’estimation des terres d’excavation fait l’objet d’un calcul basé sur la valeur ajoutée dégagée par les activités de construction. Une étude réalisée par le SOeS a permis d’établir un coefficient moyen de 2 685 tonnes de terres excavées par million d’euros de valeur ajoutée de la branche construction (valeur ajoutée de la branche construction exprimée en volume aux prix de l’année précédente chainés issue des comptes nationaux - base 2005).

Il s’agit ainsi d’appliquer ce coefficient moyen à la valeur ajoutée de la branche construction du territoire faisant l’objet de l’analyse des flux de matières. Il est impératif d’utiliser la valeur ajoutée en volume prix chainés base 2005 pour être cohérent avec le coefficient proposé. Cette information sur la valeur ajoutée est disponible uniquement à l’échelle régionale ; elle est en ligne sur le site de l’Insee.

Si l’on souhaite départementaliser l’estimation, il est possible d’appliquer au résultat régional le poids des surfaces de logements construits au niveau départemental. On pourra utiliser l’information issue de la base Sitadel, en ligne sur le site des Dreal et concernant les m² de SHON (surfaces hors œuvre nette) des logements commencés.

Pour vérifier l’ordre de grandeur du résultat, il est bon de savoir qu’au niveau national, les produits d’excavation représentent de l’ordre de 150 millions de tonnes par an.

Il est utile de prendre connaissance des derniers travaux du SOeS pour bénéficier des améliorations en cours de cette méthode d’estimation.

Les boues de dragage des ports et voies navigables

Le Centre d’études techniques maritimes et fluviales (Cetmef) recueille chaque année des données relatives aux opérations de dragage dans les ports des façades littorales au travers d’une enquête menée auprès des Services de police des eaux littorales (SPEL) des départements maritimes de France métropolitaine et d’outre-mer.

Un rapport est ainsi établi annuellement présentant les quantités de matières draguées, en tonnes de matières sèches, par département. Le rapport Enquête Dragage 2009 - Synthèse des données, est paru en août/2012. Il est disponible sur le site du Cetmef :

Il est à noter que les boues de dragage n’étaient jusqu’à présent pas comptabilisées dans les analyses de flux de matières au niveau national. Le devenir de ces matériaux présente toutefois des enjeux environnementaux et économiques, en fonction notamment de leur qualité et des filières de valorisation mises en œuvre.
Cette catégorie comprend les matières importées/exportées vers le/du territoire étudié depuis/vers d'autres territoires de la région, de la France, ou d'autres pays. Les données nationales sont organisées en plusieurs catégories de tables. Il est ainsi proposé d’utiliser la même organisation à l’échelle territoriale :

- table B : importations totales (flux venant du reste du monde) ;
- table C : exportations totales (flux vers le reste du monde) ;
- table D : importations hors UE 27 (flux venant du reste du monde hors Union européenne des 27) ;
- table E : exportations hors UE 27 (flux vers le reste du monde hors Union européenne des 27) ;
- table W : importations France (flux venant exclusivement de la France métropolitaine) ;
- table X : exportations France (flux vers exclusivement la France) ;
- table Y : importations région (flux venant exclusivement de la région) ;
- table Z : exportations région (flux vers exclusivement la région).

Il s'agit de données au niveau national (de l'ordre d'un tiers). La catégorie « Autres produits » représente le premier poste, avec 34% des matières importées. Cette catégorie regroupe principalement des produits manufacturés. Pour la France, la moitié de la masse des importations concerne les combustibles fossiles et les produits dérivés.

Les matières et produits importés en France ont représenté plus de 27 millions de tonnes en 2010, ce qui représente 16,5 tonnes par habitant. La moyenne nationale est de 5 tonnes par habitant. Les matières importées en Bourgogne comprennent celles qui proviennent d'autres pays, mais également d'autres régions françaises. Ceci explique que le ratio par habitant soit plus élevé qu’au niveau national.

Les matières et produits importés en Bourgogne proviennent à 78 % d'autres régions françaises et à 22 % de pays de l'Union européenne (UE 27). Cependant, il s'agit d'une information sur l'origine d'ordre 1, à savoir qu'elle indique le dernier lieu de déchargement de la matière avant d'arriver dans le territoire étudié (encadré Avertissement sur l'utilisation des origines géographiques des matières importées).

Les matières et produits exportés de Bourgogne ont représenté près de 27 millions de tonnes en 2010, ce qui représente 16 tonnes par habitant. La moyenne nationale est de 3 tonnes par habitant. Comme pour les matières importées, celles exportées de Bourgogne comprennent celles qui approvisionnent d’autres régions françaises. Ceci explique que le ratio par habitant soit plus élevé qu’au niveau national.

Les matières et produits exportés de Bourgogne approvisionnent à 78 % d’autres régions françaises et à 22 % des pays de l’Union européenne (UE 27). Cependant, comme pour les matières importées, il s’agit d’une information sur la destination d’ordre 1, à savoir qu’elle indique le premier lieu de décharge-ment de la matière avant d’arriver à sa destination finale.

Les produits de la biomasse issue de l’agriculture et de la sylviculture représentent le premier flux de matières exportées (36 %). Suivent les autres produits, principalement constitués de produits manufacturés (33 %).

Pour la France, les produits de la biomasse constituent également le premier poste au sein des matières exportées (44 %), devant les minéraux et produits métalliques (19 %), et les combustibles et produits dérivés (19 %).
Structure des données et sources

Nomenclature des importations/exportations du questionnaire d’Eurostat sur les flux de matières (tableaux B à E)

<table>
<thead>
<tr>
<th>Libellé EN</th>
<th>Libellé FR</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total imports</td>
<td>Importations totales</td>
</tr>
<tr>
<td>Biomass and biomass products</td>
<td>Biomasse et produits de la biomasse</td>
</tr>
<tr>
<td>Crops, raw and processed</td>
<td>Cultures, brutes et transformées</td>
</tr>
<tr>
<td>Cereals, raw and processed</td>
<td>Céréales, brutes et transformées</td>
</tr>
<tr>
<td>Roots, tubers, raw and processed</td>
<td>Racines, tubercules, brutes et transformées</td>
</tr>
<tr>
<td>Sugar crops, raw and processed</td>
<td>Cultures de sucre, brutes et transformées</td>
</tr>
<tr>
<td>Pulses, raw and processed</td>
<td>Légumineuses, brutes et transformées</td>
</tr>
<tr>
<td>Nuts, primary and processed</td>
<td>Noix, brutes et transformées</td>
</tr>
<tr>
<td>Oil bearing crops, raw and processed</td>
<td>Cultures oléagineuses, brutes et transformées</td>
</tr>
<tr>
<td>Vegetables, primary and processed</td>
<td>Légumes, brutes et transformés</td>
</tr>
<tr>
<td>Fruits, raw and processed</td>
<td>Fruits, brutes et transformées</td>
</tr>
<tr>
<td>Fibres, primary and processed</td>
<td>Fibres, brutes et transformées</td>
</tr>
<tr>
<td>Other crops n.e.c., raw and processed</td>
<td>Autres cultures n.c.a., brutes et transformées</td>
</tr>
<tr>
<td>Crop residues and fodder crops</td>
<td>Résidus de récolte et cultures fourragères</td>
</tr>
<tr>
<td>Crop residues (used), raw and processed</td>
<td>Résidus de récolte (utilisés), bruts et transformés</td>
</tr>
<tr>
<td>Fodder crops</td>
<td>Cultures fourragères</td>
</tr>
<tr>
<td>Wood and wood products</td>
<td>Bois et produits du bois</td>
</tr>
<tr>
<td>Timber, raw and processed</td>
<td>Bois, brut et transformé</td>
</tr>
<tr>
<td>Wood fuel and other extraction, raw and processed</td>
<td>Bois énergie et autre extraction, brut et transformé</td>
</tr>
<tr>
<td>Fish capture and other aquatic animals and plants, raw and processed</td>
<td>Capture de poissons et autres animaux aquatiques et plantes, bruts et transformés</td>
</tr>
<tr>
<td>Fish capture</td>
<td>Capture de poissons</td>
</tr>
<tr>
<td>All other aquatic animals and plants</td>
<td>Autres animaux et les plantes aquatiques</td>
</tr>
<tr>
<td>Live animals other than in 1.4., and animal products</td>
<td>Animaux vivants autres que ceux en 1.4., et produits animaux</td>
</tr>
<tr>
<td>Live animals other than in 1.4.</td>
<td>Animaux vivants autres que ceux en 1.4.</td>
</tr>
<tr>
<td>Meat and meat preparations</td>
<td>Viandes et préparations de viandes</td>
</tr>
<tr>
<td>Dairy products, birds eggs, and honey</td>
<td>Produits laitiers, œufs d’oiseaux et miel</td>
</tr>
<tr>
<td>Other products from animals (animal fibres, skins, furs, leather etc.)</td>
<td>Produits provenant d’animaux (fibres animales, peaux, fourrures, du cuir, etc.)</td>
</tr>
<tr>
<td>Products mainly from biomass</td>
<td>Produits essentiellement issus de la biomasse</td>
</tr>
<tr>
<td>Metal ores and concentrates, raw and processed</td>
<td>Minerais métalliques et leurs concentrés, bruts et transformés</td>
</tr>
<tr>
<td>Iron ores and concentrates, iron and steel, raw and processed</td>
<td>Minerais de fer et leurs concentrés, le fer et l’acier, bruts et transformés</td>
</tr>
<tr>
<td>Non-ferrous metal ores and concentrates, raw and processed</td>
<td>Minerais de métaux non ferreux et leurs concentrés, brut et transformés</td>
</tr>
<tr>
<td>Copper</td>
<td>Cuivre</td>
</tr>
<tr>
<td>Nickel</td>
<td>Nickel</td>
</tr>
<tr>
<td>Lead</td>
<td>Plomb</td>
</tr>
<tr>
<td>Zinc</td>
<td>Zinc</td>
</tr>
<tr>
<td>Tin</td>
<td>Étain</td>
</tr>
<tr>
<td>Gold, silver, platinum and other precious metal</td>
<td>Or, argent, platine et autres métaux précieux</td>
</tr>
<tr>
<td>Bauxite and other aluminium</td>
<td>Bauxite et autres minerais d’aluminium</td>
</tr>
<tr>
<td>Uranium and thorium</td>
<td>Uranium et thorium</td>
</tr>
<tr>
<td>Other n.e.c.</td>
<td>Autres n.c.a.</td>
</tr>
<tr>
<td>Products mainly from metals</td>
<td>Produits principalement à partir de métaux</td>
</tr>
<tr>
<td>Non-metallic minerals, raw and processed</td>
<td>Minéraux non métalliques, bruts et transformés</td>
</tr>
<tr>
<td>Marble, granite, sandstone, porphyry, basalt, other ornamental or building stone (excluding slate)</td>
<td>Marbre, granit, grès, porphyre, basalte, autres pierres ornementales ou de construction (sauf ardoise)</td>
</tr>
<tr>
<td>Chalk and dolomite</td>
<td>Caïe et dolomie</td>
</tr>
<tr>
<td>Slate</td>
<td>Ardoise</td>
</tr>
<tr>
<td>Chemical and fertilizer minerals</td>
<td>Produits chimiques et engrais minéraux</td>
</tr>
<tr>
<td>Salt</td>
<td>Sel</td>
</tr>
<tr>
<td>Limestone and gypsum</td>
<td>Calcaire et gypse</td>
</tr>
<tr>
<td>Clays and kaolin</td>
<td>Argiles et kaolin</td>
</tr>
<tr>
<td>Sand and gravel</td>
<td>Sable et gravier</td>
</tr>
<tr>
<td>Other n.e.c.</td>
<td>Autres n.c.a.</td>
</tr>
</tbody>
</table>
Description globale
Les données de flux sur les importations et exportations en France pour les échelles départementales sont fournies par le système d’information sur les transports de marchandises (SitraM).

L’organisme en charge de son administration est le Bureau des statistiques de la multimodalité (ministère de l’Écologie, du Développement durable et de l’Énergie – Medde), Service de l’observation et des statistiques (SOeS), Sous-direction des statistiques des transports).

SitraM est constitué de données annuelles sur les flux de marchandises selon le mode de transport, la nature des marchandises, l’origine et la destination, le conditionnement, et concernant le transport national et international pour trois des modes : route, rail, voies navigables intérieures et transport international des marchandises faisant l’objet du commerce extérieur français, quel que soit le mode (terrestre, aérien, maritime).

SitraM décrit les transports selon un grand nombre de critères :
- mode de transport ;
- nature du transport (transport national en France, transport international chargé ou déchargé en France, transit sur le territoire français) ;
- nature de la marchandise selon la nomenclature uniforme des marchandises pour les statistiques de transport (NST 2007) ;
- conditionnement ;

SitraM permet aussi de reconstituer des séries sur plusieurs années (depuis 1975).

La base de données SitraM a connu des transformations à partir de l’année 2007 qui la rendent moins complète sur les dernières années. En effet, le fichier SNCF n’est plus disponible à partir de 2006 (ouverture à la concurrence) et sa diffusion est très restreinte à partir de 2002. Le fichier douanes connaît des ruptures de séries sur les déclarations d’échanges de biens à partir de 2007 en intracommunautaires sur certains types de marchandises.

Organisation des données SitraM
La nature des produits est diffusée selon la nomenclature uniforme des marchandises pour les statistiques de transport (NST). La base de données est renseignée en NST de 1974 pour les données jusqu’en 2009. Sa structure possède quatre niveaux :
- le niveau chapitre en 10 postes ;
- le niveau section en 19 postes ;
- le niveau groupe en 52 postes ;
- le niveau position en 176 postes.

À partir de 2009, la nouvelle nomenclature NST 2007 est en vigueur. Les différents niveaux sont :
- les divisions (20) ;
- les groupes (81) ;
- les positions (382).
Tableau 2.13 : nomenclature NST 2007, par division

<table>
<thead>
<tr>
<th>Division</th>
<th>Libellés</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>Produits de l’agriculture, de la chasse et de la forêt ; poissons et autres produits de la pêche</td>
</tr>
<tr>
<td>01.1</td>
<td>Céréales</td>
</tr>
<tr>
<td>01.2</td>
<td>Pommes de terre</td>
</tr>
<tr>
<td>01.3</td>
<td>Betteraves à sucre</td>
</tr>
<tr>
<td>01.4</td>
<td>Autres légumes et fruits frais</td>
</tr>
<tr>
<td>01.5</td>
<td>Produits sylvicoles et de l’exploitation forestière</td>
</tr>
<tr>
<td>01.6</td>
<td>Plantes et fleurs vivantes</td>
</tr>
<tr>
<td>01.7</td>
<td>Autres matières d’origine végétale</td>
</tr>
<tr>
<td>01.8</td>
<td>Animaux vivants</td>
</tr>
<tr>
<td>01.9</td>
<td>Lait brut de vache, brebis et chèvre</td>
</tr>
<tr>
<td>01.A</td>
<td>Autres matières premières d’origine animale</td>
</tr>
<tr>
<td>01.B</td>
<td>Produits de la pêche et de l’aquaculture</td>
</tr>
<tr>
<td>02</td>
<td>Houille et lignite ; pétrole brut et gaz naturel</td>
</tr>
<tr>
<td>02.1</td>
<td>Houille et lignite</td>
</tr>
<tr>
<td>02.2</td>
<td>Pétrole brut</td>
</tr>
<tr>
<td>02.3</td>
<td>Gaz naturel</td>
</tr>
<tr>
<td>03</td>
<td>Minerais métalliques et autres produits d’extraction ; tourbe ; minerais d’uranium et de thorium</td>
</tr>
<tr>
<td>03.1</td>
<td>Minerais de fer</td>
</tr>
<tr>
<td>03.2</td>
<td>Minerais de métaux non ferreux (hors uranium et thorium)</td>
</tr>
<tr>
<td>03.3</td>
<td>Minéraux (bruts) pour l’industrie chimique et engrais naturels</td>
</tr>
<tr>
<td>03.4</td>
<td>Sel</td>
</tr>
<tr>
<td>03.5</td>
<td>Pierre, sables, graviers, argiles, tourbe et autres produits d’extraction n.c.a.</td>
</tr>
<tr>
<td>03.6</td>
<td>Minerais d’uranium et de thorium</td>
</tr>
<tr>
<td>04</td>
<td>Produits alimentaires, boissons et tabac</td>
</tr>
<tr>
<td>04.1</td>
<td>Viandes, peaux et produits à base de viandes</td>
</tr>
<tr>
<td>04.2</td>
<td>Poissons et produits de la pêche, préparés</td>
</tr>
<tr>
<td>04.3</td>
<td>Produits à base de fruits et de légumes, préparés</td>
</tr>
<tr>
<td>04.4</td>
<td>Huiles, tourteaux et corps gras</td>
</tr>
<tr>
<td>04.5</td>
<td>Produits laitiers et glaces</td>
</tr>
<tr>
<td>04.6</td>
<td>Farines, céréales transformées, produits amylacés et aliments pour animaux</td>
</tr>
<tr>
<td>Division</td>
<td>Groupe</td>
</tr>
<tr>
<td>----------</td>
<td>--------</td>
</tr>
<tr>
<td>04.7</td>
<td>Boissons</td>
</tr>
<tr>
<td>04.8</td>
<td>"Autres produits alimentaires n.c.a. et tabac manufacturé (hors messagerie ou groupage alimentaire)"</td>
</tr>
<tr>
<td>04.9</td>
<td>"Produits alimentaires divers et tabac manufacturé en messagerie ou groupage"</td>
</tr>
<tr>
<td>05</td>
<td>Textiles et produits textiles ; cur et articles en cuir</td>
</tr>
<tr>
<td>05.1</td>
<td>Produits de l’industrie textile</td>
</tr>
<tr>
<td>05.2</td>
<td>Articles d’habillement et fourrures</td>
</tr>
<tr>
<td>05.3</td>
<td>Cuir, articles de voyages, chaussures</td>
</tr>
<tr>
<td>06</td>
<td>Bois et produits du bois et du liège (hors les meubles) ; vannerie et sparterie ; pâte à papier ; papier et articles en papier, produits imprimés et supports enregistrés</td>
</tr>
<tr>
<td>06.1</td>
<td>Produits du travail du bois et du liège (sauf meubles)</td>
</tr>
<tr>
<td>06.2</td>
<td>Pâte à papier, papiers et cartons</td>
</tr>
<tr>
<td>06.3</td>
<td>Produits de l’édition, produits imprimés ou reproduits</td>
</tr>
<tr>
<td>07</td>
<td>Coke et produits pétroliers raffinés</td>
</tr>
<tr>
<td>07.1</td>
<td>Cokes et goudrons ; agglomérés et combustibles solides similaires</td>
</tr>
<tr>
<td>07.2</td>
<td>Produits pétroliers raffinés liquides</td>
</tr>
<tr>
<td>07.3</td>
<td>Produits pétroliers raffinés gazeux, liquifiés ou comprimés</td>
</tr>
<tr>
<td>07.4</td>
<td>Produits pétroliers raffinés solides ou pâtes</td>
</tr>
<tr>
<td>08</td>
<td>Produits chimiques et fibres synthétiques ; produits en caoutchouc ou en plastique ; produits des industries nucléaires</td>
</tr>
<tr>
<td>08.1</td>
<td>Produits chimiques minéraux de base</td>
</tr>
<tr>
<td>08.2</td>
<td>Produits chimiques organiques de base</td>
</tr>
<tr>
<td>08.3</td>
<td>Produits azotés et engrais (hors engrais naturels)</td>
</tr>
<tr>
<td>08.4</td>
<td>Matières plastiques de base et caoutchouc synthétique primaire</td>
</tr>
<tr>
<td>08.5</td>
<td>Produits pharmaceutiques et parachimiques, y inclus les pesticides et autres produits agrochimiques</td>
</tr>
<tr>
<td>08.6</td>
<td>Produits en caoutchouc ou en plastique</td>
</tr>
<tr>
<td>08.7</td>
<td>Produits des industries nucléaires</td>
</tr>
<tr>
<td>09</td>
<td>Autres produits minéraux non métalliques</td>
</tr>
<tr>
<td>09.1</td>
<td>Verre, verrierie, produits céramiques</td>
</tr>
<tr>
<td>09.2</td>
<td>Ciments, chaux et plâtre</td>
</tr>
<tr>
<td>09.3</td>
<td>Autres matériaux de construction, manufacturés</td>
</tr>
<tr>
<td>10</td>
<td>Métaux de base ; produits du travail des métaux, sauf machines et matériels</td>
</tr>
<tr>
<td>10.1</td>
<td>Produits sidérurgiques et produits de la transformation de l’acier (hors tubes et tuyaux)</td>
</tr>
<tr>
<td>10.2</td>
<td>Métaux non ferreux et produits dérivés</td>
</tr>
<tr>
<td>10.3</td>
<td>Tubes et tuyaux</td>
</tr>
<tr>
<td>10.4</td>
<td>Éléments en métal pour la construction</td>
</tr>
<tr>
<td>10.5</td>
<td>Chaudières, quincaillerie, armes et munitions et autres articles manufacturés en métal</td>
</tr>
<tr>
<td>11</td>
<td>Machines et matériel, n.c.a. ; machines de bureau et matériel informatique ; machines et appareils électriques, n.c.a. ; équipements de radio, télévision et communication ; instruments médicaux, de précision et d’optique, montres, pendules et horloges</td>
</tr>
<tr>
<td>11.1</td>
<td>Machines agricoles</td>
</tr>
<tr>
<td>11.2</td>
<td>Appareils domestiques n.c.a. (électroménager blanc)</td>
</tr>
<tr>
<td>11.3</td>
<td>Machines de bureau et matériel informatique</td>
</tr>
<tr>
<td>11.4</td>
<td>Machines et appareils électriques n.c.a.</td>
</tr>
<tr>
<td>11.5</td>
<td>Composants électroniques et appareils d’émission et de transmission</td>
</tr>
<tr>
<td>11.6</td>
<td>Appareils de réception, enregistrement ou reproduction du son et de l’image (électroménager brun)</td>
</tr>
<tr>
<td>11.7</td>
<td>Instruments médicaux, de précision, d’optique et d’horlogerie</td>
</tr>
<tr>
<td>11.8</td>
<td>Autres machines, machines outils et pièces</td>
</tr>
<tr>
<td>12</td>
<td>Matériel de transport</td>
</tr>
<tr>
<td>12.1</td>
<td>Produits de l’industrie automobile</td>
</tr>
<tr>
<td>12.2</td>
<td>Autres matériels de transport</td>
</tr>
<tr>
<td>13</td>
<td>Meubles ; autres produits manufacturés n.c.a.</td>
</tr>
<tr>
<td>13.1</td>
<td>Meubles</td>
</tr>
<tr>
<td>13.2</td>
<td>Autres articles manufacturés</td>
</tr>
<tr>
<td>14</td>
<td>Matières premières secondaires ; déchets de voirie et autres déchets</td>
</tr>
<tr>
<td>14.1</td>
<td>Ordures ménagères et déchets de voirie</td>
</tr>
<tr>
<td>14.2</td>
<td>Autres déchets et matières premières secondaires</td>
</tr>
<tr>
<td>15</td>
<td>Courrier, colis</td>
</tr>
<tr>
<td>15.1</td>
<td>Courrier</td>
</tr>
<tr>
<td>15.2</td>
<td>Messagerie, petits colis</td>
</tr>
<tr>
<td>16</td>
<td>Équipement et matériel utilisés dans le transport de marchandises</td>
</tr>
<tr>
<td>16.1</td>
<td>Conteneurs et caisses mobiles en service, vides</td>
</tr>
<tr>
<td>16.2</td>
<td>Palettes et autres emballages en service, vides</td>
</tr>
</tbody>
</table>
Les données mobilisées pour établir le bilan des importations/exportations sont les suivantes :
- le fichier de l’enquête sur l’utilisation des véhicules routiers de marchandises immatriculés en France (TRM) décrivant les transports routiers (pour compte d’autrui ou pour compte propre) nationaux et internationaux ;
- le fichier rail pour les transports nationaux et internationaux de marchandises par chemin de fer réalisés par wagons complets (SNCF). Le transport de colis de détail de la Sernam est exclu ; la diffusion est très restreinte à partir de 2002, voir infra (Note sur le fichier rail) ;
- le fichier voies navigables intérieures, fourni par Voies navigables de France, pour les transports nationaux et internationaux de marchandises par navigation intérieure, pour compte d’autrui ou pour compte propre, faits sous pavillon français ou étranger ;
- les fichiers des enquêtes sur l’utilisation des véhicules routiers de marchandises (TRM) d’autres pays de l’UE (tous les pays de l’UE à 27, moins Malte, plus la Norvège et le Liechtenstein). Ces enquêtes suivent les directives d’Eurostat et sont donc harmonisées. Un fichier fournit des données par pays, par grands groupes de produits et par pavillon. L’autre fichier présente des résultats par région et par pavillon, tous produits confondus.

Dans ces fichiers, le transport de la marchandise est mesuré en tonnes (poids brut des marchandises) et tonnes-kilomètres.

Note sur le fichier « Douanes »

Est également disponible le fichier du commerce extérieur de la France, provenant des douanes et recensant les transports internationaux des marchandises faisant l’objet du commerce extérieur de la France.

Cependant, depuis le 1er janvier 2006, les entreprises sont dispensées de fournir des informations sur la masse nette de leurs échanges intracommunautaires pour tous les biens pour lesquels des unités supplémentaires sont mentionnées. Pour pallier temporairement la disparition des informations, le SESP a calculé en 2006 des estimations sur les tonnages transportés. Les données en tonnes sont à nouveau disponibles à partir de l’année 2012 (disponibilité des données en juin 2013).

Ce fichier est donc à utiliser avec vigilance pour réaliser une AFM dont l’année de référence est comprise entre 2007 et 2011.

Avertissement sur l’utilisation des origines géographiques des matières importées (fichier « Douanes »)

L’origine des matières importées peut être disponible selon trois grandes zones géographiques : le reste de la France, l’Union européenne, les pays hors Union européenne. Il s’agit cependant d’une information sur l’origine d’ordre 1, à savoir qu’elle indique le dernier lieu de déchargement de la matière avant d’arriver dans le territoire étudié. Or, ce dernier lieu de déchargement peut par exemple être le port de Marseille, alors que la matière a été transportée au préalable depuis la Chine. D’autres outils sont donc nécessaires pour avoir une vision des aires d’approvisionnement d’un territoire (partie 4).
Les données de transport ferroviaire sont historiquement fournies par la SNCF. Elles sont disponibles à l’échelle départementale jusqu’en 2001, puis à l’échelle régionale jusqu’en 2006. À partir de 2006, en raison de l’ouverture du marché du transport ferroviaire national, ces données ne sont plus du tout disponibles. Suite à la restructuration du secteur des chemins de fer et en vertu du règlement statistique européen, le SOEs a mis en place une enquête statistique auprès de tous les opérateurs qui réalisent des transports ferroviaires en France. Cette enquête, qui a été suivie entre 2007 et 2011, donne des résultats globaux tous opérateurs mais peu d’informations territoriales (origines – destinations). Elle s’est arrêtée en 2012 suite à la publication du décret n° 2012-555 et son arrêté d’application. Les deux textes encadrent désormais la remontée des statistiques ferroviaires avec un volet annuel plus détaillé pour les données territoriales. Les opérateurs peuvent fournir au ministre les données sous couvert du secret des affaires, la diffusion au sein du ministère n’est alors possible que si les données des opérateurs ne sont pas identifiables. Par ailleurs, il faut noter que la collecte est récente, les données ne sont donc pas toutes disponibles auprès des opérateurs et la qualité de ce qui est transmis est très variable.

Si toutefois les données accessibles dans ce cadre ne sont pas suffisantes pour les projets d’études en lien avec la politique des transports, les services de l’État, collectivités territoriales ou établissements publics peuvent adresser directement leurs demandes aux opérateurs. Si ces derniers estiment que la divulgation de leurs données porte atteinte au secret des affaires, le Comité d’instruction des demandes d’informations ferroviaires (Cidif) peut être saisi par l’opérateur. L’appui de la Dreal peut être utile.

Si cette démarche n’aboutit pas, la méthode d’estimation suivante peut être appliquée.

Une demande sur la donnée du transport ferroviaire agrégée à l’échelle régionale (année 2010, collecte quinquennale Eurostat), et sans détail sur les types de flux peut être adressée à la division des systèmes d’informations sur les transports du SOEs. Cette donnée est confidentielle et ne pourra être utilisée que dans le cadre de l’étude ; elle ne peut être diffusée qu’agrégée avec les autres modes de transport.

Il s’agit d’une donnée sur les flux entrant et sortant de la région, distinguant les flux nationaux (de région à région française), des flux internationaux (depuis le reste du monde vers la Bourgogne et inversement).

La répartition par type de matière des flux entrant/sortant département ont été réalisée avec des ratios calculés selon la dernière répartition connue, c’est-à-dire l’année 2006.

Cas particulier : les données sur le gaz naturel et les produits pétroliers

Importations de gaz naturel

Le fichier TRM-VNF indique les importations et exportations de gaz naturel par bateau ou camion. Cette information ne représente toute-
Appliquer les deux méthodes, celle basée sur les fichiers TRM–VNF–SNC, oléoducs d’une part, et celle basée sur la consommation, d’autre part, permet de les confronter et de consolider ainsi l’estimation.

Emboîtement de la nomenclature NST dans la nomenclature MFA d’Eurostat

La liste des produits de la NST ayant dû faire l’objet d’un choix d’adaptation :

Tableau 2.14 : emboîtement des nomenclatures NST et MFA

<table>
<thead>
<tr>
<th>Position</th>
<th>Libellés</th>
<th>NST 2007</th>
<th>MFA 2011</th>
<th>Commentaire</th>
</tr>
</thead>
<tbody>
<tr>
<td>04.72</td>
<td>Bière</td>
<td>BCDE.5.0.0.0</td>
<td>Autres produits</td>
<td>Eau principalement</td>
</tr>
<tr>
<td>04.74</td>
<td>Eaux minérales et gazeuses, non sucrées, ni aromatisées</td>
<td>BCDE.5.0.0.0</td>
<td>Autres produits</td>
<td>Eau principalement</td>
</tr>
<tr>
<td>04.75</td>
<td>Autres boissons non alcoolisées</td>
<td>BCDE.5.0.0.0</td>
<td>Autres produits</td>
<td>Eau principalement</td>
</tr>
<tr>
<td>04.86</td>
<td>Sel brut ou raffiné pour alimentation humaine</td>
<td>BCDE.5.0.0.0</td>
<td>Autres produits</td>
<td>Sel marin principalement</td>
</tr>
<tr>
<td>05.16</td>
<td>Imitation de fourrure, articles textiles d’ameublement, autres articles confectionnés</td>
<td>BCDE.5.0.0.0</td>
<td>Autres produits</td>
<td>Mélange produits végétaux, animaux et synthétiques</td>
</tr>
<tr>
<td>05.19</td>
<td>Autres textiles et articles textiles n.c.a.</td>
<td>BCDE.5.0.0.0</td>
<td>Autres produits</td>
<td>Mélange produits végétaux, animaux et synthétiques</td>
</tr>
<tr>
<td>05.21</td>
<td>Vêtements et chapeaux</td>
<td>BCDE.5.0.0.0</td>
<td>Autres produits</td>
<td>Mélange produits végétaux, animaux et synthétiques</td>
</tr>
<tr>
<td>05.22</td>
<td>Chiffons, déchets de textiles – Fripes</td>
<td>BCDE.5.0.0.0</td>
<td>Autres produits</td>
<td>Mélange produits végétaux, animaux et synthétiques</td>
</tr>
<tr>
<td>05.23</td>
<td>Choses et formes pour chapeaux</td>
<td>BCDE.5.0.0.0</td>
<td>Autres produits</td>
<td>Mélange produits végétaux, animaux et synthétiques</td>
</tr>
<tr>
<td>05.36</td>
<td>Chaussures</td>
<td>BCDE.5.0.0.0</td>
<td>Autres produits</td>
<td>Mélange produits végétaux, animaux et synthétiques</td>
</tr>
<tr>
<td>05.37</td>
<td>Semelles extérieure en cuir et bagagerie en aluminium</td>
<td>BCDE.5.0.0.0</td>
<td>Autres produits</td>
<td>Mélange produits végétaux, animaux et synthétiques</td>
</tr>
<tr>
<td>08.22</td>
<td>Alcools et acides monocarboxyliques gras industriels ; huiles acides de raffinage</td>
<td>BCDE.4.3.0.0</td>
<td>Produits principalement à partir de produits pétroliers fossiles</td>
<td>Origine végétale ou pétrochimique ?</td>
</tr>
<tr>
<td>08.23</td>
<td>Alcools industriels (alcools ethyliques)</td>
<td>BCDE.4.3.0.0</td>
<td>Produits principalement à partir de produits pétroliers fossiles</td>
<td>Origine végétale ou pétrochimique ?</td>
</tr>
<tr>
<td>08.24</td>
<td>Benzols</td>
<td>BCDE.4.3.0.0</td>
<td>Produits principalement à partir de produits pétroliers fossiles</td>
<td>Origine houillère ou pétrochimique ?</td>
</tr>
<tr>
<td>08.25</td>
<td>Huiles et autres produits de la distillation des goudrons et produits similaires</td>
<td>BCDE.4.3.0.0</td>
<td>Produits principalement à partir de produits pétroliers fossiles</td>
<td>Origine houillère ou pétrochimique ?</td>
</tr>
<tr>
<td>08.26</td>
<td>Autres produits chimiques organiques et enzymes</td>
<td>BCDE.4.3.0.0</td>
<td>Produits principalement à partir de produits pétroliers fossiles</td>
<td>Origine végétale ou pétrochimique ?</td>
</tr>
<tr>
<td>08.51</td>
<td>Produits médicaux, pharmaceutiques et parachimiques - Parfumerie - produits d’entretien</td>
<td>BCDE.5.0.0.0</td>
<td>Autres produits</td>
<td>Origine végétale, minérale ou pétrochimique ?</td>
</tr>
<tr>
<td>08.52</td>
<td>Plaques et films photographiques, produits chimiques pour usages photographiques</td>
<td>BCDE.5.0.0.0</td>
<td>Autres produits</td>
<td>Origine végétale, minérale ou pétrochimique ?</td>
</tr>
<tr>
<td>08.53</td>
<td>Explosifs manufacturés pyrotechniques, munitions pour chasse et sport</td>
<td>BCDE.5.0.0.0</td>
<td>Autres produits</td>
<td>Origine végétale, minérale ou pétrochimique ?</td>
</tr>
<tr>
<td>08.55</td>
<td>Huiles et graisses lubrifiantes - Lubrifiants spéciaux</td>
<td>BCDE.4.3.0.0</td>
<td>Produits principalement à partir de produits pétroliers fossiles</td>
<td>Origine végétale, minérale ou pétrochimique ?</td>
</tr>
<tr>
<td>08.56</td>
<td>Mélanges de substances odoriférantes de plus de 0,5 % vol pour les industries des boissons</td>
<td>BCDE.5.0.0.0</td>
<td>Autres produits</td>
<td>Origine végétale, minérale ou pétrochimique ?</td>
</tr>
<tr>
<td>08.57</td>
<td>Fils de filaments de haute ténacité en polyamides et polyesters</td>
<td>BCDE.5.0.0.0</td>
<td>Autres produits</td>
<td>Origine végétale, minérale ou pétrochimique ?</td>
</tr>
<tr>
<td>Position</td>
<td>Libellés</td>
<td>Code n5</td>
<td>Libel FR</td>
<td>Commentaire</td>
</tr>
<tr>
<td>----------</td>
<td>----------</td>
<td>---------</td>
<td>----------</td>
<td>-------------</td>
</tr>
<tr>
<td>08.58</td>
<td>Oléorésines</td>
<td>BCDE.5.0.0.0</td>
<td>Autres produits</td>
<td>Origine végétale, minérale ou pétrochimique ?</td>
</tr>
<tr>
<td>08.59</td>
<td>Autres produits chimiques, médicaux, pharmaceutiques et parachimiques</td>
<td>BCDE.5.0.0.0</td>
<td>Autres produits</td>
<td>Origine végétale, minérale ou pétrochimique ?</td>
</tr>
<tr>
<td>11.25</td>
<td>Couvertures chauffantes</td>
<td>BCDE.5.0.0.0</td>
<td>Autres produits</td>
<td>Combinaison de matériaux divers, sans dominante claire</td>
</tr>
<tr>
<td>11.31</td>
<td>Machines à écrire, calculer, de comptabilité, pièces détachées</td>
<td>BCDE.5.0.0.0</td>
<td>Autres produits</td>
<td>Combinaison de matériaux divers, sans dominante claire</td>
</tr>
<tr>
<td>11.32</td>
<td>Micro-ordinateurs ; assistants personnels numériques et équipements similaires</td>
<td>BCDE.5.0.0.0</td>
<td>Autres produits</td>
<td>Combinaison de matériaux divers, sans dominante claire</td>
</tr>
<tr>
<td>11.33</td>
<td>Machines à imprimer, scanner, copier, télécopier - calculatrice électronique</td>
<td>BCDE.5.0.0.0</td>
<td>Autres produits</td>
<td>Combinaison de matériaux divers, sans dominante claire</td>
</tr>
<tr>
<td>11.34</td>
<td>Machines de photocopie, à système optique, par contact ou thermocopie et de scannage</td>
<td>BCDE.5.0.0.0</td>
<td>Autres produits</td>
<td>Combinaison de matériaux divers, sans dominante claire</td>
</tr>
<tr>
<td>11.35</td>
<td>Dispositifs à mémoire rémanente à semi-conducteurs - Machines à dicter</td>
<td>BCDE.5.0.0.0</td>
<td>Autres produits</td>
<td>Combinaison de matériaux divers, sans dominante claire</td>
</tr>
<tr>
<td>11.41</td>
<td>Connecteurs pour fibres optiques, laisseaux ou câbles</td>
<td>BCDE.5.0.0.0</td>
<td>Autres produits</td>
<td>Combinaison de matériaux divers, sans dominante claire</td>
</tr>
<tr>
<td>11.42</td>
<td>Fibres optiques, laisseaux et câbles - Appareils d’éclairage (hors céramique)</td>
<td>BCDE.5.0.0.0</td>
<td>Autres produits</td>
<td>Combinaison de matériaux divers, sans dominante claire</td>
</tr>
<tr>
<td>11.43</td>
<td>Autres machines, appareillage, moteurs électriques et pièces - n.c.a.</td>
<td>BCDE.5.0.0.0</td>
<td>Autres produits</td>
<td>Combinaison de matériaux divers, sans dominante claire</td>
</tr>
<tr>
<td>11.44</td>
<td>Parties d’appareils d’éclairage</td>
<td>BCDE.5.0.0.0</td>
<td>Autres produits</td>
<td>Combinaison de matériaux divers, sans dominante claire</td>
</tr>
<tr>
<td>11.45</td>
<td>Lampadaires, lampes de table, de bureau ou de chevet ; lustres en céramique</td>
<td>BCDE.5.0.0.0</td>
<td>Autres produits</td>
<td>Combinaison de matériaux divers, sans dominante claire</td>
</tr>
<tr>
<td>11.51</td>
<td>Composants électroniques et appareils d’émission et de transmission sans réception</td>
<td>BCDE.5.0.0.0</td>
<td>Autres produits</td>
<td>Combinaison de matériaux divers, sans dominante claire</td>
</tr>
<tr>
<td>11.52</td>
<td>Lampes, tubes, valves électroniques</td>
<td>BCDE.5.0.0.0</td>
<td>Autres produits</td>
<td>Combinaison de matériaux divers, sans dominante claire</td>
</tr>
<tr>
<td>11.53</td>
<td>Circuits intégrés</td>
<td>BCDE.5.0.0.0</td>
<td>Autres produits</td>
<td>Combinaison de matériaux divers, sans dominante claire</td>
</tr>
<tr>
<td>11.61</td>
<td>Appareils de réception du son, de l’image et accessoires (écouteurs, microphone,…)</td>
<td>BCDE.5.0.0.0</td>
<td>Autres produits</td>
<td>Combinaison de matériaux divers, sans dominante claire</td>
</tr>
<tr>
<td>11.62</td>
<td>Appareils d’enregistrement et de stockage du son, de l’image et leurs parties ; jeux vidéo</td>
<td>BCDE.5.0.0.0</td>
<td>Autres produits</td>
<td>Combinaison de matériaux divers, sans dominante claire</td>
</tr>
<tr>
<td>11.63</td>
<td>Parties de matériel téléphonique et télégraphique</td>
<td>BCDE.5.0.0.0</td>
<td>Autres produits</td>
<td>Combinaison de matériaux divers, sans dominante claire</td>
</tr>
<tr>
<td>11.71</td>
<td>Appareils photographiques numériques, radars ; matériel d’analyse médicale et de précision</td>
<td>BCDE.5.0.0.0</td>
<td>Autres produits</td>
<td>Combinaison de matériaux divers, sans dominante claire</td>
</tr>
<tr>
<td>11.72</td>
<td>Instruments et appareils d’optique, de photographie et de cinématographie</td>
<td>BCDE.5.0.0.0</td>
<td>Autres produits</td>
<td>Combinaison de matériaux divers, sans dominante claire</td>
</tr>
<tr>
<td>11.73</td>
<td>Instruments et appareils de mesure, de contrôle ou de précision ; instruments de dessin</td>
<td>BCDE.5.0.0.0</td>
<td>Autres produits</td>
<td>Combinaison de matériaux divers, sans dominante claire</td>
</tr>
<tr>
<td>11.74</td>
<td>Horlogerie</td>
<td>BCDE.5.0.0.0</td>
<td>Autres produits</td>
<td>Combinaison de matériaux divers, sans dominante claire</td>
</tr>
<tr>
<td>11.75</td>
<td>Autres instruments et accessoires utilisés à des fins médicales ou chirurgicales</td>
<td>BCDE.5.0.0.0</td>
<td>Autres produits</td>
<td>Combinaison de matériaux divers, sans dominante claire</td>
</tr>
<tr>
<td>11.87</td>
<td>Appareils de mesure et règles et d’équilibrage - Manèges, balançoires, cirques ambulants</td>
<td>BCDE.5.0.0.0</td>
<td>Autres produits</td>
<td>Combinaison de matériaux divers, sans dominante claire</td>
</tr>
<tr>
<td>12.16</td>
<td>Equipements électriques et électroniques automobiles</td>
<td>BCDE.5.0.0.0</td>
<td>Autres produits</td>
<td>Combinaison de matériaux divers, sans dominante claire</td>
</tr>
<tr>
<td>12.27</td>
<td>Sièges des types utilisés pour les véhicules aériens et automobiles</td>
<td>BCDE.5.0.0.0</td>
<td>Autres produits</td>
<td>Combinaison de matériaux divers, sans dominante claire</td>
</tr>
<tr>
<td>13.10</td>
<td>Meubles</td>
<td>BCDE.5.0.0.0</td>
<td>Autres produits</td>
<td>Combinaison de matériaux divers, sans dominante claire</td>
</tr>
<tr>
<td>13.21</td>
<td>Autres articles manufacturés n.c.a.</td>
<td>BCDE.5.0.0.0</td>
<td>Autres produits</td>
<td>Combinaison de matériaux divers, sans dominante claire</td>
</tr>
<tr>
<td>NST 2007</td>
<td>MFA 2011</td>
<td>Commentaire</td>
<td></td>
<td></td>
</tr>
<tr>
<td>----------</td>
<td>----------</td>
<td>-------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13.22</td>
<td>Monnaies n'ayant pas cours légal</td>
<td>BCDE.5.0.0.0</td>
<td>Autres produits</td>
<td>Combinaison de matériaux divers, sans dominante claire</td>
</tr>
<tr>
<td>13.23</td>
<td>Egrisés et poudres de pierres gemmes ou de pierres synthétiques</td>
<td>BCDE.5.0.0.0</td>
<td>Autres produits</td>
<td>Combinaison de matériaux divers, sans dominante claire</td>
</tr>
<tr>
<td>13.24</td>
<td>Perles de culture, pierres précieuses et semi-précieuses travaillées mais non montées</td>
<td>BCDE.5.0.0.0</td>
<td>Autres produits</td>
<td>Combinaison de matériaux divers, sans dominante claire</td>
</tr>
<tr>
<td>13.25</td>
<td>Casques de sécurité et gants ; chaussures de ski et de sports de neige</td>
<td>BCDE.5.0.0.0</td>
<td>Autres produits</td>
<td>Combinaison de matériaux divers, sans dominante claire</td>
</tr>
<tr>
<td>13.26</td>
<td>Globes imprimés - plans, dessins, textes en original à la main ou en copie au carbone - reproductions photographiques</td>
<td>BCDE.5.0.0.0</td>
<td>Autres produits</td>
<td>Combinaison de matériaux divers, sans dominante claire</td>
</tr>
<tr>
<td>13.27</td>
<td>Instruments de musique et accessoires</td>
<td>BCDE.5.0.0.0</td>
<td>Autres produits</td>
<td>Combinaison de matériaux divers, sans dominante claire</td>
</tr>
<tr>
<td>13.28</td>
<td>Produits en cheveux ou en poils animaux ; articles similaires en matières textiles</td>
<td>BCDE.5.0.0.0</td>
<td>Autres produits</td>
<td>Combinaison de matériaux divers, sans dominante claire</td>
</tr>
<tr>
<td>13.29</td>
<td>Combustibles pour briquets - balais - Articles de sport n.c.a.</td>
<td>BCDE.5.0.0.0</td>
<td>Autres produits</td>
<td>Combinaison de matériaux divers, sans dominante claire</td>
</tr>
<tr>
<td>15.10</td>
<td>Courrier</td>
<td>BCDE.0.0.0.0</td>
<td>Importations - Exportations</td>
<td>Inclassable à un niveau inférieur</td>
</tr>
<tr>
<td>15.20</td>
<td>Messagerie, petits colis</td>
<td>BCDE.0.0.0.0</td>
<td>Importations - Exportations</td>
<td>Inclassable à un niveau inférieur</td>
</tr>
<tr>
<td>16.10</td>
<td>Conteneurs et caisses mobiles en service, vides</td>
<td>BCDE.0.0.0.0</td>
<td>Importations - Exportations</td>
<td>Inclassable à un niveau inférieur</td>
</tr>
<tr>
<td>16.20</td>
<td>Palettes et autres emballages en service, vides</td>
<td>BCDE.0.0.0.0</td>
<td>Importations - Exportations</td>
<td>Inclassable à un niveau inférieur</td>
</tr>
<tr>
<td>17.10</td>
<td>Mobilier de déménagement</td>
<td>BCDE.0.0.0.0</td>
<td>Importations - Exportations</td>
<td>Inclassable à un niveau inférieur</td>
</tr>
<tr>
<td>17.20</td>
<td>Bagages et biens d’accompagnement de voyageurs</td>
<td>BCDE.0.0.0.0</td>
<td>Importations - Exportations</td>
<td>Inclassable à un niveau inférieur</td>
</tr>
<tr>
<td>17.30</td>
<td>Véhicules en réparation</td>
<td>BCDE.0.0.0.0</td>
<td>Importations - Exportations</td>
<td>Inclassable à un niveau inférieur</td>
</tr>
<tr>
<td>17.40</td>
<td>Échafaudages</td>
<td>BCDE.0.0.0.0</td>
<td>Importations - Exportations</td>
<td>Inclassable à un niveau inférieur</td>
</tr>
<tr>
<td>17.51</td>
<td>Objets de collection et objets d’antiquité de plus de 100 ans d’âge</td>
<td>BCDE.0.0.0.0</td>
<td>Importations - Exportations</td>
<td>Inclassable à un niveau inférieur</td>
</tr>
<tr>
<td>17.52</td>
<td>Plaques et films photographiques, exposés et développés ou non, pour reproduction offset</td>
<td>BCDE.0.0.0.0</td>
<td>Importations - Exportations</td>
<td>Inclassable à un niveau inférieur</td>
</tr>
<tr>
<td>17.53</td>
<td>Autres biens non marchands n.c.a.</td>
<td>BCDE.0.0.0.0</td>
<td>Importations - Exportations</td>
<td>Inclassable à un niveau inférieur</td>
</tr>
<tr>
<td>18.00</td>
<td>Groupage de marchandises diverses</td>
<td>BCDE.0.0.0.0</td>
<td>Importations - Exportations</td>
<td>Inclassable à un niveau inférieur</td>
</tr>
<tr>
<td>19.10</td>
<td>Marchandises de nature indéterminée en conteneurs et caisses mobiles</td>
<td>BCDE.0.0.0.0</td>
<td>Importations - Exportations</td>
<td>Inclassable à un niveau inférieur</td>
</tr>
<tr>
<td>19.21</td>
<td>Collage et tableautins similaires</td>
<td>BCDE.0.0.0.0</td>
<td>Importations - Exportations</td>
<td>Inclassable à un niveau inférieur</td>
</tr>
<tr>
<td>19.22</td>
<td>Œuvres originales de peintres, graphistes et sculpteurs</td>
<td>BCDE.0.0.0.0</td>
<td>Importations - Exportations</td>
<td>Inclassable à un niveau inférieur</td>
</tr>
<tr>
<td>19.23</td>
<td>Autres marchandises de nature indéterminée</td>
<td>BCDE.0.0.0.0</td>
<td>Importations - Exportations</td>
<td>Inclassable à un niveau inférieur</td>
</tr>
<tr>
<td>20.01</td>
<td>Énergie électrique</td>
<td>BCDE.0.0.0.0</td>
<td>Importations - Exportations</td>
<td>Inclassable à un niveau inférieur</td>
</tr>
<tr>
<td>20.02</td>
<td>Autres marchandises n.c.a</td>
<td>BCDE.0.0.0.0</td>
<td>Importations - Exportations</td>
<td>Inclassable à un niveau inférieur</td>
</tr>
</tbody>
</table>
Il s’agit de l’ensemble des matières rejetées dans l’environnement par le fonctionnement socio-économique du territoire. Cela recouvre les émissions atmosphériques, les rejets dans l’eau, les déchets mis en décharge, l’utilisation de flux dissipatifs (engrais, sels de déneigement, etc.) et les pertes dissipatives essentiellement dues à l’usure des matériaux (pneumatiques, chaussées, etc.).

Les émissions dans l’air représentent une part prépondérante dans l’ensemble de ces émissions dans la nature. Les émissions de CO₂ prédominent au sein des émissions dans l’air. Ce constat, basé sur une représentation quantitative des flux, ne doit toutefois pas faire oublier l’existence d’enjeux sanitaires et environnementaux qui peuvent être associés aux autres rejets (dans l’air, dans l’eau…).

Nomenclature

<table>
<thead>
<tr>
<th>Tableau 2.15 : nomenclature des émissions dans la nature</th>
</tr>
</thead>
<tbody>
<tr>
<td>F. Émissions des processus intérieurs (EPI)</td>
</tr>
<tr>
<td>F.1 Rejets dans l’air</td>
</tr>
<tr>
<td>F.2 Décharge</td>
</tr>
<tr>
<td>F.3 Rejets dans l’eau</td>
</tr>
<tr>
<td>F.4 Utilisation de produits dissipatifs</td>
</tr>
<tr>
<td>F.5 Pertes dissipatives (par exemple usure des pneus, produits de friction, des bâtiments et des infrastructures)</td>
</tr>
</tbody>
</table>

Sources : Eurostat 2009, Alterre Bourgogne, Mydiane, 2013

Les émissions de dioxyde de carbone constituent plus de 60 % de ces émissions vers la nature. Ce résultat rappelle que les déchets solides, qui sont la face la plus visible des rejets, n’en représentent pas en fait la part la plus importante (environ 15 %).

Figure 2.12 : émissions vers la nature en France

![Diagramme de pie représentant les émissions dans la nature en France]

Source : SOeS

Figure 2.11 : émissions vers la nature en Bourgogne

![Diagramme de pie représentant les émissions dans la nature en Bourgogne]

Source : Alterre Bourgogne, 2013

Ce sont plus de 17 millions de tonnes de matières qui ont été rejetées dans la nature en 2010 par les activités socio-économiques sur le territoire bourguignon, soit l’équivalent de 10,8 tonnes par habitant. Cela représente 32 % des matières qui ont été mobilisées pour le fonctionnement du territoire (matières extraites sur le territoire + matières importées).
Périphèrème

Il s’agit ici de quantifier (en masse) l’ensemble des émissions de polluants et de gaz à effet de serre produit sur le territoire d’étude. Tous les polluants sont concernés.

Des données régionales sont généralement produites par des organismes spécialisés. Il s’agit notamment des Agences agréées pour la surveillance de la qualité de l’air (réunies au sein de la fédération nationale ATMO), présentes dans chaque région française, et des Agences régionales de l’environnement (réunies dans le réseau RARE, le réseau des agences régionales énergie-environnement).

À défaut, il est possible d’obtenir un ordre de grandeur à partir des résultats nationaux, qui pourront être régionalisés ou départementalisés, par exemple au prorata de la population pour les émissions liées aux ménages, ou au prorata de l’emploi dans les différentes activités économiques pour les émissions liées à l’industrie, au secteur tertiaire et à l’agriculture.

<table>
<thead>
<tr>
<th>Tableau 2.16 : nomenclature des émissions dans l’air</th>
</tr>
</thead>
<tbody>
<tr>
<td>F.1</td>
</tr>
<tr>
<td>F.1.1</td>
</tr>
<tr>
<td>F.1.1.1</td>
</tr>
<tr>
<td>F.1.1.2</td>
</tr>
<tr>
<td>F.1.2</td>
</tr>
<tr>
<td>F.1.3</td>
</tr>
<tr>
<td>F.1.4</td>
</tr>
<tr>
<td>F.1.5</td>
</tr>
<tr>
<td>F.1.6</td>
</tr>
<tr>
<td>F.1.7</td>
</tr>
<tr>
<td>F.1.8</td>
</tr>
<tr>
<td>F.1.9</td>
</tr>
<tr>
<td>F.1.10</td>
</tr>
<tr>
<td>F.1.11</td>
</tr>
<tr>
<td>F.1.12</td>
</tr>
<tr>
<td>F.1.13</td>
</tr>
<tr>
<td>F.1.14</td>
</tr>
</tbody>
</table>

Sources : Eurostat 2009, Alterre Bourgogne, Mydiane, 2013
Fiche 4.2. La production de déchets

Périmètre

Cela concerne les déchets municipaux et industriels et comprend uniquement ceux qui sont stockés. En effet, les déchets recyclés constituent des matières qui rentrent à nouveau dans le système économique. Ils ne sont donc pas à comptabiliser dans les émissions dans la nature. Pour ce qui concerne les déchets éliminés par incinération, ils sont, pour leur part, comptabilisés sous la forme des émissions dans l’air dont ils sont à l’origine et de la partie des mâchefers qui sont envoyés en installation de stockage des déchets. Seules les quantités de mâchefers et de résidus d’épuration des fumées d’incinération des ordures ménagères (REFIOM) non valorisés seront à prendre en compte dans les déchets.

Cela ne comprend pas :
- les déchets recyclés ou réutilisés ; les déchets qui sont rejetés directement dans l’eau ou l’air ambiant. Ils sont comptabilisés dans les émissions dans l’eau ou l’air ;
- les déchets générés par les activités d’extraction : terres d’excavation dans les activités de constructions, terres de découverture dans les industries extractives (ces déchets sont comptabilisés dans l’extraction intérieure inutilisée) ;
- les déchets incinérés (ils sont pris en compte dans les émissions dans l’air).

Nomenclature

Tableau 2.17 : nomenclature de la production de déchets

<table>
<thead>
<tr>
<th>F.2</th>
<th>Waste land filled</th>
<th>Décharge</th>
</tr>
</thead>
<tbody>
<tr>
<td>F.2.1.a</td>
<td>Municipal waste (controlled)</td>
<td>Déchets municipaux (installations de stockage légales)</td>
</tr>
<tr>
<td>F.2.1.b</td>
<td>Municipal waste (uncontrolled)</td>
<td>Déchets municipaux (décharges illégales)</td>
</tr>
<tr>
<td>F.2.2.a</td>
<td>Industrial waste (controlled)</td>
<td>Déchets d’activités économiques (installations de stockage légales)</td>
</tr>
<tr>
<td>F.2.2.b</td>
<td>Industrial waste (uncontrolled)</td>
<td>Déchets d’activités économiques (décharges illégales)</td>
</tr>
</tbody>
</table>

La nomenclature d’analyse des flux de matières établit une distinction entre les déchets municipaux et les déchets d’activités économiques. Elle distingue également les déchets stockés en installations de stockage légaux, de ceux qui font l’objet de dépôts sauvages (décharges illégales).

Définitions

- Les déchets municipaux
 Les déchets municipaux regroupent l’ensemble des déchets dont la gestion relève de la compétence de la collectivité (déchets des ménages et des activités économiques collectés selon la même voie que ceux des ménages, dits « assimilés »). Ils regroupent :
 - les ordures ménagères en mélange ;
 - les déchets des ménages collectés séparément ;
 - les déchets d’activités économiques assimilés aux déchets des ménages ;
 - les encombrants des ménages ;
 - les déchets collectés en déchèteries ;
 - les déchets dangereux des ménages ;
 - les déchets du nettoiement (voie, marchés...) ;
 - les déchets de l’assainissement collectif ;
 - les déchets verts des ménages et des collectivités locales.

- Les déchets des activités économiques
 Selon l’article R. 541-8 du code de l’environnement, il s’agit de « tout déchet, dangereux ou non dangereux, dont le producteur initial n’est pas un ménage ». Les activités économiques regroupent l’ensemble des secteurs de production (agriculture-pêche, construction, secteur tertiaire, industrie).
 À noter : les termes « déchets industriels spéciaux » et « déchets industriels banals » ont été respectivement remplacés par « déchets dangereux des activités économiques » et « déchets non dangereux des activités économiques ».
 Les déchets des activités économiques regroupent :
 - des déchets minéraux ;
 - des déchets dangereux ;
 - des déchets non minéraux, non dangereux.

- Les installations de stockage
 Il s’agit :
 - des installations de stockage de déchets non dangereux (ISOND) ;
 - des installations de stockage de déchets dangereux (ISOD) ;
 - des installations de stockage de déchets inertes.
 À noter : les termes « centre d’enfouissement technique » ou « décharge » ont été remplacés par celui d’« installation de stockage de déchets ».

Sources : Eurostat 2009, Alterre Bourgogne, Mydiane, 2013
Les déchets municipaux

Les données accessibles concernent la quantité de déchets ménagers et assimilés collectés et leur destination (valorisation, incinération, stockage). Les déchets ménagers et assimilés comprennent les ordures ménagères résiduelles + les collectes collectives + les collectes en déchèteries. Par rapport aux déchets municipaux, ils ne comprennent pas :
- les déchets du nettoyement (voirie, marchés…);
- les déchets de l’assainissement collectif;
- les déchets verts des collectivités locales.

Pour les déchets municipaux, il a été considéré que la part mise en décharge non contrôlée (illégal) est non significative en France.

Pour avoir une information plus précise et plus complète, il est ainsi préférable de solliciter des sources locales, tels que des observatoires départementaux ou régionaux des déchets, ou les directions régionales de l’Ademe.

Dans la réalisation de l’analyse des flux de matières, il est important de collecter non seulement les quantités produites, mais aussi les informations relatives au type de déchets, aux modes de traitement, ainsi qu’aux destinations géographiques. Cette dernière information est importante pour évaluer l’autonomie des territoires en matière de traitement de leurs déchets.

Les déchets d’activités économiques

Les déchets des entreprises

Les déchets non dangereux des entreprises

Selon la méthodologie Eurostat, ne sont à comptabiliser dans l’analyse des flux que les quantités de déchets d’activités économiques stockés. L’enquête menée par l’Ademe tous les deux ans auprès des installations de traitement de déchets ménagers et assimilés (enquête Itoma) permet de connaître les quantités de déchets entrants dans les installations de stockage de déchets non dangereux (ISOND) selon le type de déchets (déchets municipaux ou déchets des entreprises). Cette donnée n’est cependant pas accessible directement en ligne. Il est nécessaire de faire une demande à la direction Ademe de sa région ou, le cas échéant, de contacter localement un observatoire départemental ou régional des déchets. Les conseils généraux peuvent également être des fournisseurs de données, dans la mesure où ils sont en charge des plans départementaux de prévention et de gestion des déchets non dangereux.

La mise à jour de cette enquête est désormais réalisée par l’Insee, mais elle ne comporte pas de résultats régionaux. Cependant, les résultats nationaux peuvent être régionalisés à partir de ratios rapportant la quantité de déchets produite au nombre d’emplois. Il est ainsi conseillé de compléter les données fournies par les institutions statistiques nationales par des sources locales : observatoires, Dreal (la base GEREP regroupe la déclaration annuelle des exploitants produisant des déchets non dangereux en quantité supérieure à 2 000 tonnes par an), directions régionales de l’Ademe…

Certaines régions disposent d’observatoires dédiés. C’est par exemple le cas en Midi-Pyrénées, avec l’Observatoire régional des déchets industriels en Midi-Pyrénées (Ordrimip).

Selon la source de données utilisée, il faut s’assurer que les mâchefers d’incinération sont pris en compte. Les mâchefers d’incinération peuvent être valorisés, notamment en travaux publics. Seule la part stockée est à comptabiliser. Les données sont disponibles dans le cadre de l’enquête Itoma menée par l’Ademe (voir conditions de disponibilité décrites dans les parties ci-dessus).

Les déchets dangereux des entreprises

Des données sur les productions de déchets dangereux à l’échelle régionale et par type de déchets sont fournies par la base de données EIDER (thème Déchets, sous-thème Déchets dangereux produits par les entreprises industrielles). Ces données proviennent des déclarations administratives faites par les entreprises soumises à la déclaration annuelle de leurs émissions polluantes (base de données GEREP). Les données disponibles sont toutefois très partielles. Les modes de traitement ne sont notamment pas indiqués.

Pour les régions qui l’ont mis en œuvre, le plan régional de prévention et de gestion des déchets dangereux (PRPGDD ou PREDD s’il n’a pas encore été révisé) constitue une source plus précise et complète. En l’absence de ce plan, les Dreal peuvent fournir des données issues de la base GEREP, notamment concernant la part des déchets dangereux stockés, qui constitue l’information à comptabiliser dans l’analyse des flux de matières. À noter que la base GEREP comptabilise les déchets collectés, et non pas les déchets produits.

Les déchets du bâtiment et des travaux publics

Il n’existe aucune chronique statistique nationale sur la production des déchets du BTP.

Des données peuvent toutefois être disponibles auprès de sources locales (Dreal, Directions départementales des territoires, Fédération régionale des travaux publics, Cellules économiques régionales de la construction, observatoires des déchets, etc.).

Il est notamment possible d’utiliser les diagnostics établis lors de l’élaboration des plans de prévention et de gestion des déchets issus de chantiers du BTP. En effet, la loi Grenelle 2 du 12 juillet 2010 a
imposé l’élaboration de ces plans qui doivent être établis pour juillet 2013 sous la responsabilité des conseils généraux et, pour l’Île-de-France sous la responsabilité du conseil régional.

Les états des lieux établis pour l’élaboration de ces plans détaillent généralement le gisement des déchets du BTP par type de déchets. Il est notamment intéressant de pouvoir distinguer les déchets du bâtiment (démolition, construction, réhabilitation) et ceux des travaux publics car les flux de déchets et les procédés diffèrent.

Selon la source de données retenue pour estimer les déchets d’activités économiques et les déchets du BTP, il est nécessaire de vérifier qu’il n’y a pas de double compte entre les déchets d’activités économiques (dangereux ou non) et les déchets du BTP considérés ici.

Il est possible que les plans départementaux ne précisent pas la destination de ces déchets inertes. Dans ce cas, il sera possible de réaliser une estimation très grossière de leur part stockée, en appliquant la part constatée au niveau national. Le Service de l’observation et des statistiques (SOëS) a publié les résultats de l’enquête sur les déchets produits par l’activité de construction en France en 2008. La part de déchets inertes du BTP orientés en installations de stockage (CET3, ISDI) a été en 2008 de 15 %.

Toutefois, l’expérience a pu montrer que les déchets inertes du BTP font souvent l’objet de dépôts sauvages. Il est donc conseillé de recueillir l’avis d’experts locaux sur le sujet.

Il faut également noter que, selon la méthodologie d’Eurostat, le remblaiement de carrières par des déchets du BTP est actuellement comptabilisé en recyclage, et non pas en stockage, car il permet de remplacer des matériaux vierges. Pour autant, ce choix pourrait à l’avenir être remis en cause.

Les déchets de l’agriculture
Sont considérés ici l’ensemble des déchets agricoles, hormis les effluents d’élevage. En effet, ces derniers sont pris en compte dans leur utilisation comme engrais, et comptabilisés pour cela dans le chapitre Utilisations de produits disséminés (fiche 4.4). La quantification des déchets agricoles doit privilégier la collecte de données locales (chambre d’agriculture). Faute d’informations, il est possible d’utiliser les données de collecte de déchets agricoles en France disponibles auprès du SOëS. Ces données sont produites dans le cadre du règlement européen et concernent les déchets agricoles qui sortent des exploitations agricoles et font l’objet d’un traitement (recyclage, incinération, stockage...). Les résultats peuvent être présentés par type de déchets (huiles usées, déchets de matières plastiques, déchets animaux, etc.), avec une estimation de la part stockée de ces déchets. La part de déchets agricoles stockés a ainsi été estimée à 10 % en 2010 au niveau national (hors effluents et déchets ménagers). Les effluents d’élevage et les déchets assimilables aux déchets ménagers ne sont en effet pas à prendre en compte, car déjà comptabilisés par ailleurs.

La répartition des quantités produites par département s’effectue en fonction des surfaces agricoles utiles (SAU), données du Service de la statistique et de la prospective (SSP) du ministère de l’Agriculture ou consultable dans la base de données EIDER. Les quantités de déchets agricoles stockées en centre d’enfouissement par département sont calculées à partir du pourcentage de déchets stockés pour la France (soit 10 % en 2010) et ramenées à la quantité de déchets par département.

Selon les sources de données utilisées, il est nécessaire de vérifier qu’il n’y a pas de double compte entre les déchets d’activités économiques (dangereux ou non) et les déchets de l’agriculture.

Tableau 2.18 : déchets issus de l’agriculture, de la forêt et de la pêche en France en 2010

<table>
<thead>
<tr>
<th>Rubrique</th>
<th>Code</th>
<th>Description</th>
<th>Ens. agriculture, forêt, pêche</th>
<th>Agriculture et forêt</th>
<th>Agriculture</th>
<th>Forêt</th>
<th>Pêche</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>01.1</td>
<td>Solvants usés</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>01.2</td>
<td>Déchets acides, alcalins ou salins</td>
<td>66,5</td>
<td>66,5</td>
<td>57,2</td>
<td>9,3</td>
<td>NC</td>
</tr>
<tr>
<td>3</td>
<td>01.3</td>
<td>Huiles usées</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>01.4</td>
<td>Catalyseurs chimiques usés</td>
<td>23,9</td>
<td>23,9</td>
<td>23,9</td>
<td>0,1</td>
<td>NC</td>
</tr>
<tr>
<td>5</td>
<td>02</td>
<td>Déchets de préparations chimiques</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>03.1</td>
<td>Dépôts et résidus chimiques</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>03.2</td>
<td>Boues d’effluents industriels</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>05</td>
<td>Déchets provenant de soins médicaux ou vétérinaires et déchets biologiques</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>06</td>
<td>Déchets métalliques</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>07.1</td>
<td>Déchets de verre</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>07.2</td>
<td>Déchets de papiers, cartons</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>07.3</td>
<td>Déchets de caoutchouc</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>07.4</td>
<td>Déchets de matières plastiques</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>07.5</td>
<td>Déchets de bois</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Unité : 1 000 000 tonnes
### Rubrique	Code	Description	Ens. agriculture, forêt, pêche	Agriculture et forêt	Agriculture	Forêt	Pêche
24 | 07.6 | Déchets textiles | | | | | |
25 | 07.7 | Déchets contenant des PCB | | | | | |
26 | 08 | Equipements hors d'usage | 15,5 | 15,5 | 15,1 | 0,4 | NC |
27 | 08.1 | Véhicules au rebus | 250,0 | 250,0 | 250,0 | NC | NC |
28 | 08.1.1 | Déchets de piles et accumulateurs | 21,8 | 21,8 | 21,7 | 0,1 | NC |
29 | 09 | Déchets animaux et végétaux (à l'exclusion préparation aliments et produits alimentaires et fumiers animaux) | 3,8 | 3,8 | 3,8 | - | - |
30 | 09.11 | Déchets animaux de la préparation des produits alimentaires et de produits alimentaires | 461,6 | 443,9 | 443,9 | - | 17,7 |
31 | 10.1 | Déchets ménagers et similaires | 30,5 | 28,3 | 28,3 | 2,2 | |
32 | 10.2 | Matériaux mélangés et marériaux indifférenciés | | | | | |
33 | 10.3 | Résidus de tri | | | | | |
34 | 11 | Boues ordinaires (à l'exclusion des boues de dragage) | | | | | |
35 | 11.3 | Boues de dragage | | | | | |
36 | 12.1 à 3,5 | Déchets minéraux (à l'exclusion des résidus d'opérations thermiques, des terres et boues de dragage polluées) | | | | | |
37 | 12.4 | Résidus d'opérations thermiques | | | | | |
38 | 12.6 | Terres et boues de dragage polluées | | | | | |
39 | 13 | Déchets solidifiés, stabilisés ou vitrifiés | 309,4 | | | | |
40 | 13 | Déchets d'équarrissage | | | | | |
41 | Ensemble | | 1 342,8 | 1 322,9 | 1 621,9 | 10,3 | 19,9 |

Attention : il s’agit des déchets sortants des exploitations agricoles et faisant l’objet d’un traitement. La destination des déchets fait l’objet d’estimation.

Les déchets d’assainissement

Les quantités de boues produites par les stations d’épuration, ainsi que la destination de ces boues, peuvent être obtenues auprès des agences de l’eau et/ou des services d’assistance technique aux exploitants de station d’épuration (Satese), services des conseils généraux. Les quantités sont généralement exprimées en tonnes de matières sèches.

Seules les données concernant les stations des collectivités ou les stations mixtes (collectivités et industriels) sont à comptabiliser ici, la production de boues des stations industrielles étant comptabilisée dans les déchets d’activités économiques.
Périmètre

Les rejets dans l’eau sont des substances et des matériaux rejetés dans les eaux naturelles par les activités humaines après être passés ou non par un traitement des eaux usées. Au niveau d’un pays, les rejets dans l’eau représentent la plus faible part des émissions dans la nature.

Il s’agit de comptabiliser les quantités de polluants rejetés chaque année dans l’eau, et non pas les concentrations de polluants observées dans les masses d’eau.

Nomenclature

<table>
<thead>
<tr>
<th>Tableau 2.19 : nomenclature des rejets dans l’eau</th>
</tr>
</thead>
<tbody>
<tr>
<td>F.3.0</td>
</tr>
<tr>
<td>F.3.1</td>
</tr>
<tr>
<td>F.3.2</td>
</tr>
<tr>
<td>F.3.3</td>
</tr>
<tr>
<td>F.3.4</td>
</tr>
<tr>
<td>F.3.5</td>
</tr>
</tbody>
</table>

Sources : Eurostat 2009, Alterre Bourgogne, Mydiane, 2013

Pour renseigner les lignes F.3.1 à F.3.3 de la nomenclature

Les quantités d’azote rejetées représentent la somme de tous les composés azotés. De même, les quantités de phosphore rejetées représentent la somme de tous les composés du phosphore. Les rejets d’azote et de phosphore ne comprennent ici que les rejets par l’industrie et par les eaux usées des ménages. L’azote et le phosphore provenant de l’agriculture ne sont pas inclus dans les rejets dans l’eau car ils sont comptabilisés dans la catégorie « flux dissipatifs ».

Pour les rejets d’origine industrielle

La base de données EIDER (tableaux détaillés – rubrique Eau) indique les quantités de polluants rejettés à l’échelle des régions françaises. Seuls sont pris en compte les établissements industriels rejetant des quantités au-delà d’un certain seuil défini pour chaque polluant. Une estimation à l’échelle départementale peut être effectuée grossièrement à partir de la répartition par département du nombre de salariés dans l’industrie. Ces données sont disponibles auprès de l’Insee, notamment à partir de la base connaissance locale de l’appareil productif (CLAP).

Tableau 2.20 : correspondance entre la base EIDER et la nomenclature MFA pour les rejets dans l’eau

<table>
<thead>
<tr>
<th>Catégories de polluants dans EIDER</th>
<th>Classement dans la nomenclature de l’AFM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demande chimique en oxygène (DCO)</td>
<td>Voir paragraphe spécifique</td>
</tr>
<tr>
<td>Matières en suspension</td>
<td>F.3.4</td>
</tr>
<tr>
<td>AOX ou EOX</td>
<td>F.3.4</td>
</tr>
<tr>
<td>Hydrocarbures</td>
<td>F.3.4</td>
</tr>
<tr>
<td>Aluminium</td>
<td>F.3.3</td>
</tr>
<tr>
<td>Arsenic</td>
<td>F.3.3</td>
</tr>
<tr>
<td>Azote</td>
<td>F.3.1</td>
</tr>
<tr>
<td>Cadmium</td>
<td>F.3.3</td>
</tr>
<tr>
<td>Chlorures</td>
<td>F.3.4</td>
</tr>
<tr>
<td>Chrome hexavalent</td>
<td>F.3.3</td>
</tr>
<tr>
<td>Chrome</td>
<td>F.3.3</td>
</tr>
<tr>
<td>Cuivre</td>
<td>F.3.3</td>
</tr>
<tr>
<td>Cyanures</td>
<td>F.3.4</td>
</tr>
<tr>
<td>Étain</td>
<td>F.3.3</td>
</tr>
<tr>
<td>Fer</td>
<td>F.3.3</td>
</tr>
<tr>
<td>Fluor</td>
<td>F.3.4</td>
</tr>
<tr>
<td>Manganèse</td>
<td>F.3.3</td>
</tr>
<tr>
<td>Mercure</td>
<td>F.3.3</td>
</tr>
<tr>
<td>Nickel</td>
<td>F.3.3</td>
</tr>
<tr>
<td>Phénols</td>
<td>F.3.4</td>
</tr>
<tr>
<td>Phosphore</td>
<td>F.3.2</td>
</tr>
<tr>
<td>Plomb</td>
<td>F.3.3</td>
</tr>
<tr>
<td>Sulfates</td>
<td>F.3.4</td>
</tr>
<tr>
<td>Titanes</td>
<td>F.3.3</td>
</tr>
<tr>
<td>Zinc</td>
<td>F.3.3</td>
</tr>
</tbody>
</table>

Source : base EIDER, EA10DET Rejets de polluants dans l’eau des principaux émetteurs industriels en 2009, France et région

Attention : les résultats dans EIDER sont exprimés en kg/an ou en tonne/an selon les polluants (voir l’unité précisée pour le seuil). Pour sommer les résultats pour l’ensemble des métaux, il est donc nécessaire d’exprimer chaque résultat en tonnes.
La demande chimique en oxygène ou DCO exprime la quantité d’oxygène nécessaire pour oxyder la matière organique, biodégradable ou non, d’une eau à l’aide d’un oxydant, le bichromate de potassium. Ce paramètre donne une approximation des matières oxydables et permet ainsi d’approcher la quantité de matières organiques (MO) par le biais de l’équation suivante :
\[
 MO = \frac{2 \times DBO_5 + DCO}{3}
\]
Où DBOS est la demande biochimique en oxygène à cinq jours. Celle-ci exprime la quantité d’oxygène nécessaire à la dégradation de la matière organique biodégradable d’une eau par le développement de micro-organismes, mesurée communément sur cinq jours (on ne peut donc avoir qu’une dégradation partielle). Cette mesure donne une approximation de la charge en matières organiques biodégradables.

Il est possible de retenir le rapport moyen suivant entre la DCO et la DBO5 pour les eaux résiduaires des collectivités :
\[
 \frac{DCO}{DBO_5} = 2
\]
Ce qui permet d’aboutir à une estimation de la quantité de matières organiques :
\[
 MO = \frac{2DCO}{3}
\]
Pour ne pas faire de double compte, les quantités d’azote et de phosphore sont à soustraire car déjà comptabilisées par ailleurs. En effet, la matière organique est composée de carbone, hydrogène, oxygène, azote, phosphore, soufre.

Pour les rejets des ménages
Il est possible de considérer, d’une part, les rejets en sortie des stations d’épuration des collectivités, d’autre part ceux issus des installations d’assainissement autonome, pour les logements non raccordés à une station d’épuration.

Les données concernant les rejets des stations d’épuration peuvent être obtenues auprès des agences de l’eau, qui disposent de la performance des stations et des quantités effectivement rejetées d’azote, de phosphore et de matières organiques.

Il est ensuite possible d’appliquer un rejet moyen d’azote par habitant, estimé entre 13 et 15 g par jour et par personne, soit de l’ordre de 5 kg par an et par personne (donnée extraite de *Traitement de l’azote dans les stations d’épuration biologique des petites collectivités*, FNDAE n° 25, ministère de l’Agriculture et de la Pêche).

Pour renseigner la ligne F.3.5 de la nomenclature
L’immersion de matériaux en mer n’est pas courante et peu de données sont disponibles. Cette catégorie ne comprend pas les boues de dragage des ports et voies fluviales, qui sont comptabilisés par ailleurs dans l’extraction intérieure inutilisée.
Périmètre

Cela comprend les matières ou substances qui sont volontairement dissipées dans l’environnement, la dispersion étant une qualité inhérente à l’utilisation du produit. C’est le cas de l’utilisation des engrais minéraux ou organiques épandus en agriculture, des pesticides, des sels de déneigement, etc.

Le principal flux dissipatif est composé de l’épandage d’engrais minéraux. Ce flux est donc à prendre en compte en priorité.

Nomenclature

Tableau 2.21 : nomenclature de l’utilisation de produits dissipatifs

<table>
<thead>
<tr>
<th>F.4.0</th>
<th>Dissipative use of products</th>
<th>Utilisation de produits dissipatifs</th>
</tr>
</thead>
<tbody>
<tr>
<td>F.4.1</td>
<td>Organic fertiliser (manure)</td>
<td>Engrais organique (fumier)</td>
</tr>
<tr>
<td>F.4.2</td>
<td>Mineral fertiliser</td>
<td>Engrais minéral</td>
</tr>
<tr>
<td>F.4.3</td>
<td>Sewage sludge</td>
<td>Boues d’épuration</td>
</tr>
<tr>
<td>F.4.4</td>
<td>Compost</td>
<td>Compost</td>
</tr>
<tr>
<td>F.4.5</td>
<td>Pesticides</td>
<td>Pesticides</td>
</tr>
<tr>
<td>F.4.6</td>
<td>Seeds</td>
<td>Graines</td>
</tr>
<tr>
<td>F.4.7</td>
<td>Salt and other thawing materials spread on roads (incl grit)</td>
<td>Sel et autres matériaux de décongélation épandus sur les routes (grain incl)</td>
</tr>
<tr>
<td>F.4.8</td>
<td>Solvents, laughing gas and other</td>
<td>Solvants, gaz hilarant et autres</td>
</tr>
</tbody>
</table>

Les lignes F.4.6 et F.4.8 de la nomenclature ne sont pas quantifiées au niveau national, et peuvent être négligées.

Pour renseigner la ligne F.4.1 de la nomenclature

L’étude réalisée en 2002 par Biomasse Normandie, *Évaluation des quantités actuelles et futures des déchets épandus sur les sols agricoles et provenant de certaines activités*, met à disposition une estimation pour tous les départements français des quantités d’effluents produits par catégorie d’animaux :

- bovins ;
- porcins ;
- volailles et lapins ;
- ovis, caprins et équins.

L’étude précise la quantité d’effluents émise directement au champ par le bétail, et celle récupérable sous forme de fumier et de lisier, en vue d’un épandage. Par convention, l’ensemble de ces quantités est comptabilisé dans ce chapitre.

Les données à utiliser sont celles exprimées en tonnes de matières sèches.

Pour renseigner la ligne F.4.2 de la nomenclature

Une estimation des quantités à l’échelle départementale peut être faite grossièrement au prorata des surfaces agricoles utilisées (SAU) de chaque département. Cette information est disponible annuellement dans les statistiques agricoles fournies par le Service de la statistique et de la prospective (SSP) du ministère de l’Agriculture, consultables en ligne (source : statistique agricole annuelle). Elle est également capitalisée dans la base de données EIDER.

Il faut noter que les données fournies par l’Unifa portent sur les livraisons d’engrais et non pas sur les quantités réellement utilisées par les exploitations agricoles. Il existe une enquête du Service de la statistique et de la prospective (SSP) du ministère de l’Agriculture sur les pratiques culturales en 2006 qui apporte des informations plus fines sur l’usage des engrais. Cependant, cette enquête n’est pas annuelle et ne porte pas sur toutes les cultures. En outre, elle exprime les résultats en quantité d’éléments fertilisants épandus et non pas en tonnes d’engrais, comme le nécessite la méthodologie de l’AFM.

Pour renseigner la ligne F.4.3 de la nomenclature

Les chambres départementales d’agriculture disposent de données annuelles sur les quantités de boues d’épuration épandues, les surfaces et le nombre d’agriculteurs concernés. Ces quantités sont exprimées en tonnes de matières sèches.

Pour renseigner la ligne F.4.4 de la nomenclature

L’enquête menée par l’Ademe tous les deux ans auprès des installations de traitement de déchets ménagers et assimilés (enquête Itoma) permet de connaître les quantités de déchets traités par les plate-formes de compostage et la quantité de compost produit. Cette donnée n’est cependant pas accessible directement en ligne. Il est nécessaire de faire une demande à la direction Ademe de sa région ou, le cas échéant, de contacter localement un observatoire départemental ou régional des déchets. Les conseils généraux peuvent également être des fournisseurs de données, dans la mesure où ils sont en charge des plans départementaux de prévention et de gestion des déchets non dangereux.

En première approximation, à partir des données de compost produit, on pourra faire l’hypothèse que tout le compost sorti des plate-formes de compostage d’un territoire est épandu sur ce territoire.

Pour renseigner la ligne F.4.5 de la nomenclature

Il s’agit de renseigner les quantités de produits utilisés, et non les quantités de matières actives.

Peut être utile de se rapprocher d’organismes locaux, tels que les Services de la protection des végétaux (SRPV) de la Draaf, devenu le SRL, service de l’alimentation. Des enquêtes locales ont ainsi pu être menées auprès des distributeurs pour connaître les ventes de produits phytosanitaires. Le Service régional d’information statistique et économique (SRISE) de la Draaf, dispose également d’informations dans le

Pour renseigner les lignes F.4.6 et F.4.8 de la nomenclature

Ces lignes ne sont pas renseignées au niveau national.

Pour renseigner la ligne F.4.7 de la nomenclature

Il est conseillé d’interroger les CETE (Centres d’études techniques de l’équipement), regroupés depuis le 1er janvier 2014 au sein du Centre d’études et d’expertise sur les risques, l’environnement, la mobilité et l’aménagement (Cerema), ainsi que les DIR (Directions interdépartementales des routes).

Entre 800 000 et 1 500 000 tonnes de sel par an sont épandus sur l’ensemble du réseau routier national, départemental et communal. Une moyenne annuelle d’un million de tonnes au niveau national peut être retenue. Une estimation à l’échelle régionale ou départementale pourra ainsi être réalisée en appliquant le poids du linéaire routier du territoire dans le linéaire national. Cette méthode d’estimation est très grossière mais permet toutefois de prendre en compte des quantités de matières non négligeables.
Périmètre

Les pertes dissipatives sont des sorties involontaires de matières vers l'environnement. Elles peuvent être issues de sources mobiles ou fixes et peuvent résulter de phénomènes d’abrasion (comme l’abrasion des pneumatiques), de produits de friction (comme les freins et embrayages), de corrosion ou d’érosion (comme pour les bâtiments et infrastructures).

Cette catégorie comprend des flux très divers, dont beaucoup d’entre eux n’ont jamais été quantifiés. La méthode Eurostat recommande ainsi de collecter ou estimer uniquement les données qui peuvent être fournies avec un effort justifiable. Une méthode est proposée ci-dessous pour approcher les seuls flux liés à l’usure des chaussées et à l’abrasion des pneus.

Nomenclature

<table>
<thead>
<tr>
<th>Tableau 2.22 : nomenclature des pertes dissipatives</th>
</tr>
</thead>
<tbody>
<tr>
<td>F.5.0 Dissipative losses (e.g abrasion from tires, friction products, buildings and infrastructure)</td>
</tr>
</tbody>
</table>

L’usure des chaussées

La méthode Eurostat ne propose pas de méthodologie pour quantifier ce flux mais indique qu’il est probablement quantitativement important. Les travaux de Sabine Barles (professeur à l’université Paris 1 Panthéon-Sorbonne, et membre du laboratoire Géographie-Cités), sur la région Midi-Pyrénées, ont en effet montré qu’à l’échelle de cette région, l’usure des chaussées représentait annuellement de l’ordre de 1 500 milliers de tonnes de matières, soit 3 % de l’ensemble des flux sortants.

Sabine Barles propose la méthode suivante :

Les données sur les longueurs des routes par type de voie (en métropole) sont fournies par le Mémento de statistique de transport (chapitre Transports urbains et routiers), téléchargeable sur le site Internet du SOeS. Une usure de 1 mm par an, avec une masse volumique de 2,5 tonnes par m³ est retenue.

La formule suivante peut être appliquée : longueur des routes x largeur x 1 mm d’usure x masse volumique en prenant garde de bien exprimer l’ensemble des données avec des unités cohérentes.

La largeur moyenne retenue pour les différents types de voies est la suivante : autoroute, 25 mètres ; route nationale, 9 mètres ; route départementale ou communale, 7 mètres.

L’abrasion des pneus

Les matières en caoutchouc issues de l’abrasion des pneus peuvent être estimées à partir des résultats d’une étude de cas réalisée en Autriche et que la méthode Eurostat propose d’appliquer. La moyenne de l’abrasion par pneu ainsi évaluée est de 0,03 g de matières par km parcouru.
La transformation de matières peut impliquer des échanges d’eau et d’air qui affectent le bilan des masses. Par exemple, dans le cas de la combustion d’un hydrocarbure, la réaction chimique qui est en jeu peut s’écritre de façon simplifiée comme suit :

\[\text{hydrocarbure} + \text{oxygène} = \text{dioxyde de carbone} + \text{eau}. \]

Or, l’analyse des flux de matières* comptabilise en entrée la masse de l’hydrocarbure, et en sortie le dioxyde de carbone (CO_2) produit. Pour tenir compte du principe de conservation de la masse et équilibrer le bilan des masses entrantes et sortantes, il est ainsi nécessaire de comptabiliser également en sortie le dioxyde de carbone qui est issue de cette réaction.

Les éléments dits « d’équilibrage » permettent ainsi de prendre en compte les masses d’air consommées et celles d’eau produites afin d’équilibrer le bilan. Ils comptabilisent également l’azote nécessaire à la fabrication d’engrais azoté par le procédé de Haber-Bosch.

Les éléments d’équilibrage à prendre en compte en entrée dans le système :
- la demande en oxygène lors de combustions (à la fois techniques ou biologiques) ;
- l’oxygène nécessaire à la respiration des humains et du bétail ;
- l’azote nécessaire à la fabrication d’engrais azoté par le procédé de Haber-Bosch.

Les éléments d’équilibrage à prendre en compte en sortie dans le système :
- les émissions de CO_2 et de vapeur d’eau provenant de la respiration biologique ;
- la vapeur d’eau issue de la combustion de combustibles fossiles contenant de l’eau ou d’autres composés d’hydrogène.

À noter : les incendies de biomasse génèrent des émissions de CO_2 et de H_2O qui ne sont pas prises en compte ici.

Ces entrées et sorties supplémentaires qui sont nécessaires pour établir un bilan de masse complet représentent une masse importante, comme en attestent les résultats bourguignons (ou France entière).

Les éléments d’équilibrage en entrée et en sortie pour la Bourgogne sont pratiquement égaux : 15,8 millions de tonnes en entrée et 15,1 millions de tonnes en sortie.

Le principal flux d’équilibrage en entrée est lié à la combustion d’énergie et à l’oxygène que celle-ci consomme. Les principaux flux d’équilibrage en sortie sont liés à la respiration des humains et du bétail (40 % pour la vapeur d’eau et 31 % pour le dioxyde de carbone rejeté).
Fiche 5.1. Oxygène nécessaire aux processus de combustion

L’estimation se fait en deux étapes.

Étape 1
Il s’agit d’appliquer aux émissions de CO_2, CO, SO_2, NO_2 et N_2O provenant de la combustion, un coefficient massique fourni par la méthodologie Eurostat.

<table>
<thead>
<tr>
<th>Tableau 2.24 : coefficients pour le calcul des quantités d’oxygène provenant de la combustion</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quantité d’oxygène par CO_2 : 0,727</td>
</tr>
<tr>
<td>Quantité d’oxygène par CO : 0,571</td>
</tr>
<tr>
<td>Quantité d’oxygène par SO_2 : 0,5</td>
</tr>
<tr>
<td>Quantité d’oxygène par N_2O : 0,364</td>
</tr>
<tr>
<td>Quantité d’oxygène par NO_2 : 0,696</td>
</tr>
</tbody>
</table>

Source : Guide Eurostat 2009

Étape 2
De l’oxygène est également nécessaire pour l’oxydation de l’hydrogène contenu dans certains combustibles énergétiques, lors de la réaction de combustion. Les quantités d’oxygène nécessaires sont estimées en appliquant un coefficient proposé par la méthodologie Eurostat aux quantités de combustibles consommés sur le territoire.

<table>
<thead>
<tr>
<th>Tableau 2.25 : coefficients pour le calcul des quantités d’oxygène provenant de l’oxydation de l’hydrogène</th>
</tr>
</thead>
<tbody>
<tr>
<td>O_2 en tonnes par tonne de combustibles</td>
</tr>
<tr>
<td>Sewage gas / Biogas / Landfill gas</td>
</tr>
<tr>
<td>Hard coal</td>
</tr>
<tr>
<td>Coke (hard coal)</td>
</tr>
<tr>
<td>Hard coal briquettes</td>
</tr>
<tr>
<td>Brown coal, crude</td>
</tr>
<tr>
<td>Dust- and dry coal</td>
</tr>
<tr>
<td>Hard brown coal</td>
</tr>
<tr>
<td>Brown coal briquettes and coke</td>
</tr>
<tr>
<td>Mine gas</td>
</tr>
<tr>
<td>Coke oven gas</td>
</tr>
<tr>
<td>Natural gas, Crude oil gas</td>
</tr>
<tr>
<td>Gasoline</td>
</tr>
<tr>
<td>Diesel</td>
</tr>
<tr>
<td>Aviation gasoline</td>
</tr>
<tr>
<td>Fuel oil, light</td>
</tr>
<tr>
<td>Fuel oil, medium and heavy</td>
</tr>
<tr>
<td>Liquid gas</td>
</tr>
<tr>
<td>Refinery gas</td>
</tr>
<tr>
<td>Other solid fuels</td>
</tr>
<tr>
<td>Blast furnace gas</td>
</tr>
</tbody>
</table>

Source : Guide Eurostat 2009

Étape finale
Les quantités totales d’oxygène nécessaires à la combustion sont la somme des résultats de l’étape 1 et de l’étape 2. Cette somme est à comptabiliser dans les entrées dans le système.
Fiche 5.2. Oxygène nécessaire à la respiration des humains et du bétail

Il s’agit d’appliquer un coefficient unitaire proposé par la méthodologie Eurostat au nombre d’habitants du territoire et aux têtes de bétail.

Coefficients unitaires proposés par Eurostat :

<table>
<thead>
<tr>
<th>Tête qui respire</th>
<th>Coefficient</th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Humains</td>
<td>0,25</td>
<td>Insee – estimation de population</td>
</tr>
<tr>
<td>Bovins</td>
<td>2,45</td>
<td>Service de la statistique et de la prospective (SSP) du ministère de l’Agriculture, statistique agricole annuelle</td>
</tr>
<tr>
<td>Moutons</td>
<td>0,2</td>
<td>données consultables sur http://agreste.agriculture.gouv.fr</td>
</tr>
<tr>
<td>Chevaux</td>
<td>1,84</td>
<td>http://www.stats.environnement.developpement-durable.gouv.fr dans la base EIDER (rubrique tableaux détaillés/Agriculture)</td>
</tr>
<tr>
<td>Cochons</td>
<td>0,25</td>
<td></td>
</tr>
<tr>
<td>Volailles</td>
<td>0,01</td>
<td></td>
</tr>
</tbody>
</table>

Source : Guide Eurostat 2009
Le procédé Haber-Bosch désigne la réaction de l’azote et de l’hydrogène pour produire de l’ammoniac. L’azote est obtenu à partir de l’air et l’hydrogène est obtenu à partir d’eau et de gaz naturel.

Ce processus permet de produire chaque année dans le monde plus de 100 millions de tonnes d’ammoniac synthétique, dont sont dérivés les engrais synthétiques azotés (source: *International fertilizer industry association, Fertilizer indicators*, mai 2013).

L’estimation des quantités d’azote nécessaires peut ainsi être faite en multipliant la production d’ammoniac exprimée en tonnes, avec les besoins en azote par tonne.

La production d’ammoniac en France a été de l’ordre de 800 milliers de tonnes en 2009 (d’après la Société chimique de France). Elle se localisait dans cinq sites de production : Grand-Quevilly (76), Grandpuits (77), Le Havre (76), Ottmarsheim (68), Pardies (64).

La quantité d’azote nécessaire est d’environ 0,83 tonne d’azote pour 1 tonne de NH₃ produite, d’après la méthodologie Eurostat.

Seules les quantités d’azote liées à un site de production présent sur le territoire d’étude doivent être estimées et comptabilisées en entrée.
Fiche 5.4. Vapeur d’eau produite lors de combustion de combustibles fossiles

Étape 1
Estimation de la vapeur d’eau issue de la combustion de combustibles fossiles contenant de l’eau.
Il s’agit d’appliquer les coefficients standards proposés par la méthodologie Eurostat aux quantités de combustibles fossiles consommés sur le territoire étudié.

Étape 2
Estimation de la vapeur d’eau issue de la combustion de combustibles fossiles contenant des composés hydrogénés. Il s’agit d’appliquer les coefficients standards proposés par la méthodologie Eurostat aux quantités de combustibles fossiles consommés sur le territoire faisant l’objet d’une analyse de flux de matières.

Tableau 2.27 : coefficients pour le calcul des quantités de vapeur d’eau produite lors de combustion de combustibles fossiles contenant de l’eau

<table>
<thead>
<tr>
<th>Combustible</th>
<th>Vapeur d’eau en tonne, par tonne de combustibles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hard coal</td>
<td>0,02</td>
</tr>
<tr>
<td>Coke (hard coal)</td>
<td>0,02</td>
</tr>
<tr>
<td>Hard coal briquettes</td>
<td>0,02</td>
</tr>
<tr>
<td>Brown coal, crude</td>
<td>0,59</td>
</tr>
<tr>
<td>Dust- and dry coal</td>
<td>0,11</td>
</tr>
<tr>
<td>Hard brown coal</td>
<td>0,18</td>
</tr>
<tr>
<td>Brown coal briquettes and -coke</td>
<td>0,12</td>
</tr>
<tr>
<td>Fuel oil, light</td>
<td>0,001</td>
</tr>
<tr>
<td>Fuel oil, medium and heavy</td>
<td>0,005</td>
</tr>
<tr>
<td>Other solid fuels</td>
<td>0,16</td>
</tr>
</tbody>
</table>

Tableau 2.28 : coefficients pour le calcul des quantités de vapeur d’eau issue de la combustion de combustibles fossiles contenant des composés hydrogénés

<table>
<thead>
<tr>
<th>Combustible</th>
<th>Vapeur d’eau en tonne, par tonne de combustibles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sewage gas/ Biogas/ Landfill gas</td>
<td>Biogaz/Gaz de décharge/Gaz d’épuration</td>
</tr>
<tr>
<td>Hard coal</td>
<td>0,42</td>
</tr>
<tr>
<td>Coke (hard coal)</td>
<td>0,07</td>
</tr>
<tr>
<td>Hard coal briquettes</td>
<td>0,37</td>
</tr>
<tr>
<td>Brown coal, crude</td>
<td>0,17</td>
</tr>
<tr>
<td>Dust- and dry coal</td>
<td>0,37</td>
</tr>
<tr>
<td>Hard brown coal</td>
<td>0,36</td>
</tr>
<tr>
<td>Brown coal briquettes and -coke</td>
<td>0,37</td>
</tr>
<tr>
<td>Mine gas</td>
<td>1,77</td>
</tr>
<tr>
<td>Coke oven gas</td>
<td>Gaz de four à coke</td>
</tr>
<tr>
<td>Natural gas, Crude oil gas</td>
<td>Gaz naturel, gaz de pétrole brut</td>
</tr>
<tr>
<td>Gasoline</td>
<td>Essence</td>
</tr>
<tr>
<td>Diesel</td>
<td>Gazole</td>
</tr>
<tr>
<td>Aviation gasoline</td>
<td>Essence d’aviation</td>
</tr>
<tr>
<td>Fuel oil, light</td>
<td>Fioul domestique</td>
</tr>
<tr>
<td>Fuel oil, medium and heavy</td>
<td>Fioul moyen et lourd</td>
</tr>
<tr>
<td>Liquid gas</td>
<td>Gaz liquide</td>
</tr>
<tr>
<td>Refinery gas</td>
<td>Gaz de raffinerie</td>
</tr>
<tr>
<td>Other solid fuels</td>
<td>Autres combustibles solides</td>
</tr>
<tr>
<td>Blast furnace gas</td>
<td>Gaz de haut fourneau</td>
</tr>
</tbody>
</table>

La somme des résultats obtenus aux deux étapes précédentes constitue la quantité totale de vapeur d’eau issue de la combustion de combustibles fossiles.
Il s’agit d’appliquer un coefficient unitaire proposé par la méthodologie Eurostat au nombre d’habitants du territoire* et aux têtes de bétail.

Tableau 2.29 : coefficients pour le calcul des quantités de dioxyde de carbone et de vapeur d’eau issus de la respiration

<table>
<thead>
<tr>
<th></th>
<th>t CO₂ par tête qui respire et par an</th>
<th>t H₂O par tête qui respire et par an</th>
</tr>
</thead>
<tbody>
<tr>
<td>Humains</td>
<td>0,30</td>
<td>0,35</td>
</tr>
<tr>
<td>Bovins</td>
<td>2,92</td>
<td>3,38</td>
</tr>
<tr>
<td>Ovins</td>
<td>0,24</td>
<td>0,27</td>
</tr>
<tr>
<td>Chevaux</td>
<td>2,19</td>
<td>2,53</td>
</tr>
<tr>
<td>Porcins</td>
<td>0,30</td>
<td>0,35</td>
</tr>
<tr>
<td>Volailles</td>
<td>0,01</td>
<td>0,01</td>
</tr>
</tbody>
</table>

Source : Guide Eurostat 2009

Sources de données pour la population et les cheptels :

<table>
<thead>
<tr>
<th></th>
<th>Source</th>
</tr>
</thead>
<tbody>
<tr>
<td>Humains</td>
<td>Insee - estimation de population</td>
</tr>
<tr>
<td>Bovins</td>
<td>Service de la statistique et de la prospective (SSP) du ministère de l’Agriculture, statistique agricole annuelle</td>
</tr>
<tr>
<td>Chevaux</td>
<td>http://agreste.agriculture.gouv.fr</td>
</tr>
<tr>
<td>Porcins</td>
<td></td>
</tr>
<tr>
<td>Volailles</td>
<td></td>
</tr>
</tbody>
</table>

Fiche 5.5. Dioxyde de carbone et vapeur d’eau issus de la respiration des humains et du bétail
Fiche 6. L’addition nette au stock

L’addition nette au stock correspond aux matériaux qui s’accumulent dans le stock existant, sous forme d’infrastructures, de bâtiments ou de biens durables (voiture, électroménager...).

Elle peut être calculée directement comme la somme des ajouts aux stocks de matériel (construction et biens durables), diminuée des suppressions de bâtiments, infrastructures et biens durables (déchets de démolitions, biens durables mis en centre de stockage, à l’exclusion des matériaux recyclés).

Elle peut également se calculer en faisant la différence entre les matières qui entrent chaque année dans le système socio-économique et celles qui en sortent, de la façon suivante :

\[
\begin{align*}
\text{Addition nette} = \text{Entrées} - \text{Sorties} \\
\text{Entrées} = \text{Importations} + \text{Extraction intérieure utilisée} + \text{Éléments d’équilibre en entrée} \\
\text{Sorties} = \text{Exportations} + \text{Émissions dans la nature} + \text{Éléments d’équilibre en sortie}
\end{align*}
\]

Cette méthode par différence est celle qui est retenue ici. Ce calcul peut théoriquement aboutir à une valeur positive ou négative. Cependant, une valeur positive a été constatée dans tous les pays et territoires étudiés jusqu’à présent, qui traduit le déplacement de matières du milieu naturel vers la société. Cette accumulation supplémentaire de matières varie, selon les années, entre 6 et 9 tonnes par an et par habitant pour la France. À titre d’illustration, l’addition nette au stock a été estimée en 2010 pour la région Bourgogne à 7 tonnes par habitant.
Tout matériau ou produit importé ou exporté pèse davantage, en termes de flux physiques mobilisés par le système socio-économique, que son poids propre apparent. Des terres, des combustibles énergétiques et d’autres matériaux ont été mobilisés (extraits, déplacés, rejetés ou consommés) sur le territoire ou à l’étranger, pour sa fabrication et son acheminement.

Les flux indirects sont les matières qui ont été mobilisées pour la fabrication d’un produit ou d’un service prêt à être importé ou exporté, en déduisant la masse du produit lui-même. Ces flux ne sont pas physiquement importés ou exportés.

Ainsi, une voiture neuve importée de masse 1,250 tonne est comptabilisée comme telle dans les statistiques douanières. Pourtant, d’autres quantités de matières ont été mobilisées dans un ou plusieurs pays étrangers pour fabriquer tous les matériaux présents dans cette voiture. De l’énergie a également été nécessaire pour les extraire, les transformer, les transporter. Les peintures ont aussi nécessité des solvants. Tous ces tonnages, non apparents et non comptabilisés aux frontières, sont bien réels et doivent être considérés pour déterminer le besoin total en matières du territoire.

Sur plus de 5 700 produits importés pris en compte dans l’étude, environ 2 500 produits, dont près de 95 % de produits fins ou semi-fins, n’ont pas encore fait l’objet d’estimation de coefficients techniques. Ainsi, les flux indirects ne sont pas pris en compte pour 43 % des produits, soit 13 % de la masse des importations de la France en 2006. L’estimation qui peut être faite des flux indirects grâce à cette étude est donc probablement sous-évaluée.

Pour un territoire infra-national, il est difficile d’appliquer ces coefficients techniques, dans la mesure où la nomenclature des données de transport de marchandises n’est pas cohérente avec la présentation de ces coefficients.

Cependant, l’enjeu d’estimer ces flux indirects est important, notamment avec l’augmentation de la part de produits fins et de services dans les importations et exportations observées au niveau national. Au niveau d’un territoire local, l’enjeu est avant tout celui de l’information et de la sensibilisation. L’estimation de ces flux indirects permet aux territoires d’avoir une vision d’ensemble de leurs impacts en termes de consommation de matières et de voir comment ils fonctionnent avec le reste du monde. Ces résultats peuvent les amener à envisager d’autres pistes dans leurs stratégies de développement, notamment en favorisant certaines filières de production locales, et à sensibiliser leurs habitants.

Aussi, il est proposé d’appliquer les résultats observés au niveau national à l’ensemble des territoires français. Sur la période 1990-2011, les flux indirects associés aux importations de la France ont représenté en moyenne 3,9 fois la masse des importations. Les flux indirects liés aux exportations de la France ont représenté en moyenne 5,3 fois la masse des exportations. Pour une première approche, dans un objectif de sensibilisation, il est possible d’utiliser ces rapports de 3,9 et de 5,3 pour estimer les flux indirects associés à l’échelle d’un territoire infranational.

Pour une estimation un peu plus fine, il est possible d’appliquer un rapport moyen par grandes familles de flux (biomasse agricole, biomasse sylvicole, matériaux de construction, combustibles fossiles, etc.), selon les données du tableau suivant :

Tableau 2.30 : rapports entre les flux indirects et les flux apparents par grandes familles de flux

<table>
<thead>
<tr>
<th>Matériau</th>
<th>Importations</th>
<th>Exportations</th>
</tr>
</thead>
<tbody>
<tr>
<td>Biomasse issue de l’agriculture et de la pêche</td>
<td>6.9</td>
<td>6.0</td>
</tr>
<tr>
<td>Bois et produits dérivés</td>
<td>4.9</td>
<td>3.5</td>
</tr>
<tr>
<td>Minéraux métalliques et produits à base dominante de métal</td>
<td>11.7</td>
<td>11.6</td>
</tr>
<tr>
<td>Minéraux à usage principal dans la construction</td>
<td>0.9</td>
<td>0.9</td>
</tr>
<tr>
<td>Minéraux industriels et produits à dominante non métallique</td>
<td>4.5</td>
<td>2.3</td>
</tr>
<tr>
<td>Charbons et produits dérivés</td>
<td>5.2</td>
<td>13.2</td>
</tr>
<tr>
<td>Pétrole (dont pétrole raffiné)</td>
<td>0.4</td>
<td>0.9</td>
</tr>
<tr>
<td>Gaz naturels et produits dérivés</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>Produits à base dominante de combustibles fossiles</td>
<td>1.5</td>
<td>1.7</td>
</tr>
<tr>
<td>Autres produits</td>
<td>5.0</td>
<td>3.9</td>
</tr>
<tr>
<td>Total</td>
<td>3.9</td>
<td>5.3</td>
</tr>
</tbody>
</table>

Source : SOéS, comptes macroéconomiques de flux de matières.
Les flux indirects (ou flux cachés) liés aux matières et produits importés en Bourgogne représentent de l'ordre de 4,8 fois la masse des importations. Les flux indirects liés aux exportations depuis la Bourgogne représentent de l'ordre de 4,5 fois la masse des exportations. Les principaux flux indirects sont liés aux importations et exportations de produits alimentaires et de produits manufacturés (Autres produits).

Par ailleurs, certains exemples illustratifs peuvent être mis en avant pour faciliter l’appropriation des résultats.

Par exemple, la fabrication d’une voiture mobilise une masse de matières au moins 7 à 10 fois équivalente à celle qui la compose.
La comptabilité des flux de matières : exploitations et analyses
Un outil innovant pour la compréhension du fonctionnement des territoires

Pour répondre à ses besoins et assurer son fonctionnement, la société extrait, importe, transforme, consomme, exporte des ressources et des produits finis ou semi-finis et émet vers l’air, l’eau et le sol des flux de matières constituant pour certains d’entre eux des déchets et des polluants.

La réalisation d’une analyse de flux de matières (AFM) ou comptabilité de flux de matières à l’échelle infranationale, ou métabolisme territorial, consiste à comptabiliser les flux matériels impliqués dans le fonctionnement d’un territoire. Tous les flux sont exprimés en tonnes, quelles que soient la matière considérée et sa spécificité (dangerosité, matière brute ou produit fini…). Elle présente ainsi l’intérêt d’une approche transversale et intégrée de l’utilisation des ressources à l’échelle territoriale.

L’AFM est donc un outil dédié à l’observation, à l’analyse et au suivi du fonctionnement des territoires dans leur dimension matérielle.

Les AFM viennent combler un manque de connaissance important sur la composition « physique » d’une économie locale (ici départementale ou régionale). Elles servent ainsi à comprendre, dans les grandes masses, les quantités de matières mises en jeu par le fonctionnement d’un territoire avec une information par catégorie de flux. Elles permettent d’évaluer les quantités de matières extraites des écosystèmes (localement ou ailleurs dans le monde), qui se retrouvent inévitablement, tôt ou tard, rejetées dans les milieux naturels sous forme de résidus (déchets, émissions vers l’air ou l’eau). Les indicateurs qui en découlent révèlent ainsi des enjeux à la fois locaux et planétaires.

L’analyse de flux de matières vient également contribuer à la définition d’actions relevant de stratégies et de politiques visant une meilleure efficacité dans l’utilisation des ressources : prévention des déchets, éco-efficacité, écologie industrielle et territoriale, économie circulaire, économie de fonctionnalité, etc.

L’identification des actions à mener est liée au territoire étudié et peut nécessiter des approfondissements complémentaires, pouvant mobiliser d’autres données de terrain et méthodes d’analyses.

Il s’agit également d’un outil de suivi des impacts, à long terme, des actions de terrain sur l’utilisation des ressources. Les premières AFM réalisées constituent le démarrage d’un historique qui permettra, demain, de suivre et d’évaluer les effets des politiques décidées aujourd’hui.

L’utilisation et la gestion durable des ressources naturelles constituent une thématique relativement nouvelle dans l’agenda politique des élus locaux. L’outil AFM leur apporte un support leur permettant, comme le préconise l’Union européenne, de veiller à ce que la consommation des ressources renouvelables et non renouvelables ne dépasse pas ce que la biosphère peut supporter, de dissocier la consommation des ressources du développement humain et économique (dématérialisation et découplage). Les stratégies à suivre visent une meilleure efficacité de l’utilisation des ressources, le développement d’une économie moins « matérielle », tout en prévenant la production des déchets.

Les AFM constituent un élément important dans la mise en place de plates-formes régionales dédiées à la gestion des flux de ressources.

1 En dehors de l’eau avec la méthode présentée dans ce guide.
2 Voir partie 4, page 103 – Approfondir les AFM par des approches complémentaires.
3 Voir point 9 de la deuxième feuille de route pour la transition écologique issue de la conférence environnementale 2013.
Ce que permet une AFM territoriale
• Disposer d’une vision d’ensemble des flux de matières à l’échelle de son territoire.
• Décrire le fonctionnement de son système socio-économique via l’utilisation des ressources (en reliant modes d’utilisation du sol et métabolisme territorial par exemple).
• Comprendre les pressions exercées globalement sur les ressources.
• Améliorer la surveillance des niveaux d’extraction de ressources naturelles et des émissions dans les écosystèmes. Détecter par exemple la surexploitation d’une ressource critique et anticiper l’évolution de sa consommation dans les années à venir.
• Connaître les flux de matières en jeu pour une mise en regard avec les flux issus du recyclage, observés ou potentiels.
• Quantifier la part des flux mis en jeu par rapport aux autres (biomasse, métaux, matériaux de construction, énergie fossile, etc.).
• Comprendre et corriger le niveau de dépendance de son territoire par rapport aux territoires extérieurs pour son approvisionnement en matières.
• Produire une information sur les flux associés aux importations et aux exportations, et souligner l’importance des consommations indirectes de matières pour satisfaire nos besoins.
• Étudier l’évolution dans le temps de la consommation de matières d’un territoire.
• Étudier la question de la dématérialisation du fonctionnement d’un territoire et de ses sous-ensembles : flux spécifique, fonctions territoriales (alimentaires, industrielles, urbaines...), etc.
• Comparer les utilisations de flux de matières entre départements et régions.
• Communiquer sur les résultats obtenus de manière simple, en recourant à la tonne comme unité de mesure et additionner facilement les chiffres sur les différents flux et catégories de matières.

Les limites d’une AFM territoriale
• Une AFM territoriale comptabilise les flux de matières. Elle ne constitue pas un bilan énergétique : les combustibles (bois, pétrole, gaz, etc.) sont pris en compte en tant que flux de matières, mais pas les vecteurs énergétiques tels que l’électricité, la vapeur, etc.
• Les flux d’eau ne sont pas pris en compte dans une AFM territoriale. Les quantités d’eau consommées au sein d’un territoire sont en effet si importantes qu’elles masqueraient tous les autres flux. L’étude du cycle de l’eau peut être réalisée par ailleurs.
• Certains enjeux environnementaux ou économiques liés à des flux très faibles en masse (métaux lourds, pesticides, métaux stratégiques, etc.) ne sont pas pris en compte par l’AFM territoriale. Ceux-ci nécessiteraient d’autres méthodes telles que l’analyse des flux de substances. L’AFM territoriale peut d’ailleurs servir de base à ces analyses.
• Elle donne un bilan entrée/sortie pour un territoire donné. Elle ne porte pas sur la circulation des flux à l’intérieur de celui-ci, dont la connaissance fait appel à des méthodes complémentaires.
• Elle repose sur l’exploitation de nomenclatures préétablies qui n’ont pas été conçues initialement pour la réalisation de bilans de matières. La caractéristique multi-composite de certains des flux (produits manufacturés importés/exportés) amène à faire des classements qui peuvent paraître insatisfaisants pour l’exercice du bilan de matières, mais résultent d’un compromis entre la précision et la charge de travail nécessaire. Par exemple, un tracteur est composé de nombreuses matières, même si la principale d’entre elles appartient à la catégorie des métaux. De même, une bouteille de vin est composée de matières appartenant à deux catégories, celle de la biomasse (contenu) et des minéraux non-métalliques (contenant). À défaut de disposer facilement de l’information nécessaire ou bien d’avoir les moyens de la constituer, la méthode propose aux utilisateurs de classer l’importation/exportation de tels produits dans la catégorie de leur principale matière : le tracteur sera donc rangé dans la catégorie des produits principalement à base de métaux et la bouteille de vin dans celle de la biomasse.

1 Voir partie 4, page 103, Approfondir les AFM par des approches complémentaires.
Les indicateurs de flux de matières

Longtemps axée sur les seules émissions du système de production, l’observation de l’environnement s’est avérée insuffisante pour rendre compte d’enjeux plus transversaux liés à l’utilisation des ressources. Avec les analyses de flux de matières, l’étendue de cette observation devient beaucoup plus importante, car elle renseigne de manière globale et intégrée sur la dimension matérielle du fonctionnement des territoires, tous flux confondus, en entrée comme en sortie.

Le déploiement de ce type de méthodologie à l’échelle régionale et/ou départementale permet ainsi de construire des indicateurs intégrés sur l’utilisation des flux de matières, qui dépassent la collection d’indicateurs sectoriels aujourd’hui disponibles sur la production de déchets, la consommation d’énergie, les émissions de CO₂, les prélèvements en eau, etc.

Les indicateurs dérivés des AFM mesurent la quantité de ressources naturelles prélevées dans la nature pour les besoins de l’économie, les matières rejetées dans l’environnement (eau, air, sol et sous-sol), la quantité de matières stockée dans le territoire sous forme d’infrastructures ou de biens durables. Ils permettent également d’appréhender la consommation de ressources induite par un territoire donné dans le reste du monde.

Les indicateurs issus d’une AFM contribuent à la définition et à l’évaluation des politiques de gestion des ressources et permettent d’effectuer des comparaisons entre territoires et avec le territoire national. Les comparaisons entre territoires doivent tenir compte des caractéristiques propres à chaque territoire en termes écologiques et socio-économiques.

La figure 3.1 permet de visualiser une partie de ces indicateurs, présentés de façon plus explicite dans le tableau 3.1, et dont les relations sont présentées dans la figure 3.2. Le tableau 3.2 en donne une illustration dans le cas de la région Bourgogne.

Ainsi, les indicateurs dérivés des AFM mesurent la quantité de ressources naturelles prélevées dans la nature pour les besoins de l’économie, les matières rejetées dans l’environnement (eau, air, sol et sous-sol), la quantité de matières stockée dans le territoire sous forme d’infrastructures ou de biens durables. Ils permettent également d’appréhender la consommation de ressources induite par un territoire donné dans le reste du monde.

Les indicateurs issus d’une AFM contribuent à la définition et à l’évaluation des politiques de gestion des ressources et permettent d’effectuer des comparaisons entre territoires et avec le territoire national. Les comparaisons entre territoires doivent tenir compte des caractéristiques propres à chaque territoire en termes écologiques et socio-économiques.

La figure 3.1 permet de visualiser une partie de ces indicateurs, présentés de façon plus explicite dans le tableau 3.1, et dont les relations sont présentées dans la figure 3.2. Le tableau 3.2 en donne une illustration dans le cas de la région Bourgogne.

Figure 3.1 : schéma de principe et principaux indicateurs de l’AFM territoriale

![Diagramme des flux de matières](image-url)
Tableau 3.1 : principaux indicateurs dérivés de l’AFM territoriale : définition et utilisation

<table>
<thead>
<tr>
<th>Indicateur / Abréviation</th>
<th>Signification</th>
<th>Composition</th>
<th>Utilisation dans l’interprétation du métabolisme territorial*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indicateurs d’entrée</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I</td>
<td>Importations</td>
<td>Tous types d’importations confondus : matières premières (céréales, pétrole, minerais métalliques…), produits semi-finis (farine, tissus, feuilles ou barres d’acier…) et produits finis (préparations alimentaires, gazol, vêtements, voitures…).</td>
<td>Les importations renseignent sur le poids des produits de tous types (importations commerciales) et provenant de l’extérieur du territoire* étudié. Des informations complémentaires sur l’origine géographique (la région, la France, l’Europe des 27 ou le reste du monde) de ces flux sont également disponibles et renseignent sur les aires d’approvisionnement d’un territoire* donné.</td>
</tr>
<tr>
<td>DMI</td>
<td>Direct Material Input ou Entrée directe de matière</td>
<td>Ensemble des matières entrant directement et physiquement dans le système socio-économique* étudié (extraites du territoire* et importées) afin de répondre à la demande intérieure et à la production destinée à l’exportation.</td>
<td>L’indicateur DMI traduit le besoin apparent en matières de l’économie. Il peut être intéressant de suivre la part des importations à l’intérieur du DMI en comparaison avec l’extraction intérieure.</td>
</tr>
<tr>
<td>TMI</td>
<td>Total Material Input ou Entrée totale de matière</td>
<td>Ensemble des matières entrant physiquement dans le système socio-économique* étudié.</td>
<td>L’indicateur TMI intègre à l’indicateur DMI les flux indirects que sont les extractions intérieures inutilisées, c’est-à-dire les flux de matières qui ont été déplacés sans entrer dans le système économique. Cet indicateur est important à prendre en compte pour comprendre le poids de ces flux par rapport aux entrées directes.</td>
</tr>
<tr>
<td>TMR</td>
<td>Total Material Requirement ou Mobilisation totale de matières</td>
<td>Ensemble des matières extraites de la biosphère mobilisée par le système socio-économique* étudié, y compris les flux dits « cachés ». Ces derniers comprennent des flux de matières inutilisées : les résidus de récoltes laissés sur place et l’érosion des sols par les pratiques agricoles pour la biomasse, les terres excavées lors de l’extraction de minerais ou lors de travaux de construction ; dans le cas des importations, des flux indirects de matières utilisées s’ajoutent : ils correspondent non seulement aux combustibles énergétiques mobilisés pour la production de biens et leur transport avant l’entrée dans le territoire, mais aussi, pour les produits fins et semi-finis, aux déchets de toute nature engendrés par leur production hors du territoire*.</td>
<td>L’intégration des flux indirects liés aux importations permet de tenir compte des répercussions du fonctionnement du système socio-économique* étudié sur l’environnement à l’étranger et dans les autres territoires français. Il est important de suivre la part de ces flux indirects dans le TMR.</td>
</tr>
<tr>
<td>BI</td>
<td>Balancing Input ou Flux d’équilibrage entrant (pour mémoire)</td>
<td>Oxygène consommé par la respiration humaine et animale et la combustion et azote consommé par le procédé Haber Bosch (fiche n° 5, partie 2).</td>
<td>BI n’est pas à proprement parler un indicateur. Il est indiqué ici pour mémoire car il est nécessaire à la détermination de certains indicateurs en application du principe de conservation de la masse.</td>
</tr>
</tbody>
</table>
Indicateurs de sortie

<table>
<thead>
<tr>
<th>Indicateur / Abréviation</th>
<th>Signification</th>
<th>Composition</th>
<th>Utilisation dans l’interprétation du métabolisme territorial*</th>
</tr>
</thead>
<tbody>
<tr>
<td>E</td>
<td>Exports</td>
<td>Les exportations renseignent sur le poids des produits de tous types (exportations commerciales) sortant du territoire* étudié. Des informations complémentaires sur la destination géographique (la région, la France, l’Europe des 27 ou le reste du monde) de ces flux sont également disponibles et renseignent sur les aires d’exportation d’un territoire* donné.</td>
<td></td>
</tr>
<tr>
<td>DPO</td>
<td>Domestic Processed Output ou Émissions vers la nature</td>
<td>L’indicateur DPO est à comparer aux autres indicateurs plus classiques tels que DMC (ci-dessous), DEU, E et I; il permet de mesurer les enjeux associés à ces rejets. Il est utile de distinguer la part des émissions atmosphériques des autres types de rejet.</td>
<td></td>
</tr>
<tr>
<td>TDO</td>
<td>Total Domestic Output ou Émissions totales vers la nature</td>
<td>L’indicateur TDO complète l’indicateur DPO en rendant compte de l’ensemble des rejets intérieurs vers la nature. Il donne une image plus complète des pressions aval exercées sur l’environnement.</td>
<td></td>
</tr>
<tr>
<td>BO</td>
<td>Balancing Output ou Flux d’équilibrage sortant (pour mémoire)</td>
<td>BO n’est pas à proprement parler un indicateur. Il est indiqué ici pour mémoire car il est nécessaire à la détermination de certains indicateurs en application du principe de conservation de la masse.</td>
<td></td>
</tr>
</tbody>
</table>

Indicateurs de consommation

<table>
<thead>
<tr>
<th>Indicateur / Abréviation</th>
<th>Signification</th>
<th>Composition</th>
<th>Utilisation dans l’interprétation du métabolisme territorial*</th>
</tr>
</thead>
<tbody>
<tr>
<td>DMC</td>
<td>Domestic Material Consumption ou Consommation intérieure apparente de matières</td>
<td>L’indicateur DMC est classique en économie* et représente la consommation nette intérieure d’un territoire* donné.</td>
<td></td>
</tr>
<tr>
<td>DMCp</td>
<td>Physical Domestic Material Consumption ou Consommation intérieure physique de matières</td>
<td>En prenant en compte les flux d’équilibrage BI et BO, l’indicateur DMCp représente la consommation physique nette intérieure d’un territoire* donné. Par application du principe de conservation de la masse, il est égal à la somme de DPO et de NAS. La part respective de DPO et de NAS dans DMCp permet de mieux qualifier le type de fonctionnement du territoire.</td>
<td></td>
</tr>
<tr>
<td>TMC</td>
<td>Total Material Consumption ou Consommation intérieure totale estimée de matières</td>
<td>L’indicateur TMC étend la notion de consommation à l’ensemble des flux indirects pour comprendre le poids total de matières liées à la consommation ou engendrées par les activités économiques d’un territoire* donné.</td>
<td></td>
</tr>
</tbody>
</table>

*Dans la version 2012 du manuel de comptabilité économique de l’environnement publié sous l’égide des Nations unies, les déchets enfouis en décharges légales sont considérés comme un flux interne au système économique. Cependant, suivant le choix fait par Eurostat dans son manuel de 2001, le SOeS considère jusqu’à présent les déchets enfouis en décharge comme une émission de résidus vers l’environnement. Il paraît pertinent de suivre ce principe dans le cadre de ce guide.
Références

Indicateur de stock

<table>
<thead>
<tr>
<th>Indicateur / Abréviation</th>
<th>Signification</th>
<th>Composition</th>
<th>Utilisation dans l’interprétation du métabolisme territorial*</th>
</tr>
</thead>
<tbody>
<tr>
<td>NAS</td>
<td>Net Addition to Stock ou Addition nette de stock</td>
<td>NAS = DMI + BI - DPO - exportations - BO = DMC corr - DPO</td>
<td>La prise en compte du stock traduit le déplacement des matières du milieu naturel vers la société, et donc constitue l’un des indicateurs de l’anthropisation du territoire. Elle est aussi nécessaire dans une vision à plus long terme, puisque le stock d’aujourd’hui sera probablement le déchet de demain et, a fortiori, une ressource potentielle.</td>
</tr>
</tbody>
</table>

Indicateur de balance commerciale physique

<table>
<thead>
<tr>
<th>Indicateur / Abréviation</th>
<th>Signification</th>
<th>Composition</th>
<th>Utilisation dans l’interprétation du métabolisme territorial</th>
</tr>
</thead>
<tbody>
<tr>
<td>PTB</td>
<td>Physical Trade Balance ou Balance commerciale physique</td>
<td>Balance commerciale physique apparente : PTB = E - I</td>
<td>L’évolution de la balance physique peut être comparée à celle de la balance commerciale du territoire. Cette comparaison peut notamment permettre de voir si le territoire exporte des produits qui présentent une plus grande valeur monétaire que ceux qu’il importe, ou si c’est le cas inverse.</td>
</tr>
</tbody>
</table>

Indicateurs d’efficience

<table>
<thead>
<tr>
<th>Indicateur / Abréviation</th>
<th>Signification</th>
<th>Composition</th>
<th>Utilisation dans l’interprétation du métabolisme territorial</th>
</tr>
</thead>
<tbody>
<tr>
<td>MI</td>
<td>Material Intensity ou Intensité Matières</td>
<td>DMC/PIB ou DMI/PIB ou TMR/PIB</td>
<td>Ces indicateurs mettent en relation consommation matérielle et production de richesse. Ils sont utiles dans l’étude du découplage entre consommation de matières et croissance économique. Il est surtout intéressant d’étudier leurs variations sur une période longue. Ils sont également utiles dans les approches comparatives entre territoires.</td>
</tr>
<tr>
<td>MP</td>
<td>Material Productivity ou Productivité Matière</td>
<td>PIB/DMC ou PIB/DMI ou PIB/TMR</td>
<td></td>
</tr>
</tbody>
</table>

Le cas des territoires très urbanisés : les indicateurs LEPO et DMC_{corr}

Dans le cas des territoires très urbanisés, il est fréquent que les infrastructures de traitement des déchets solides et des eaux usées soient extérieures au territoire, quoique placées sous le contrôle des collectivités dont elles reçoivent les matières. Dans ce cas, les rejets vers la nature locaux sont distingués des rejets vers la nature exportés. Les rejets vers la nature locaux correspondent à l’indicateur DPO. Les rejets vers la nature exportés doivent être additionnés aux exportations « classiques ».

Un autre indicateur, LEPO (Local and exported processed output) est alors introduit. Il correspond à la somme des rejets locaux et des rejets exportés et rend compte de l’ensemble des rejets vers la nature. Le calcul de la DMC (consommation intérieure apparente de matières) peut alors être corrigé pour prendre en compte cette situation particulière. L’indicateur DMC_{corr} est introduit : DMC_{corr} = DMI - E + rejets exportés.
Le schéma ci-dessous indique la correspondance entre les principaux indicateurs de flux matières :

![Schéma des indicateurs de l'AFM](image)

Cette correspondance entre indicateurs est également un moyen de vérification des calculs des indicateurs.

Tableau 3.2 : indicateurs dérivés de l’AFM, région Bourgogne et ses départements, en France, en 2010

<table>
<thead>
<tr>
<th></th>
<th>Côte-d’Or</th>
<th>Nièvre</th>
<th>Saône-et-Loire</th>
<th>Yonne</th>
<th>Bourgogne</th>
<th>France</th>
</tr>
</thead>
<tbody>
<tr>
<td>DEU</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>en milliers de tonnes</td>
<td>7 784,8</td>
<td>5 864,3</td>
<td>7 847,3</td>
<td>6 275,6</td>
<td>27 773,0</td>
<td>636 177,4</td>
</tr>
<tr>
<td>en t/hab</td>
<td>14,8</td>
<td>26,7</td>
<td>14,1</td>
<td>18,2</td>
<td>16,9</td>
<td>9,8</td>
</tr>
<tr>
<td>en t/km²</td>
<td>888,4</td>
<td>860,3</td>
<td>915,1</td>
<td>845,1</td>
<td>879,4</td>
<td>993,1</td>
</tr>
<tr>
<td>I</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>en milliers de tonnes</td>
<td>9 418,1</td>
<td>3 781,6</td>
<td>12 819,3</td>
<td>6 479,0</td>
<td>27 116,5</td>
<td>324 369,1</td>
</tr>
<tr>
<td>en t/hab</td>
<td>17,9</td>
<td>17,2</td>
<td>23,1</td>
<td>18,8</td>
<td>16,5</td>
<td>5,0</td>
</tr>
<tr>
<td>en t/km²</td>
<td>1 074,8</td>
<td>554,7</td>
<td>1 495,0</td>
<td>872,4</td>
<td>858,6</td>
<td>506,3</td>
</tr>
<tr>
<td>E</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>en milliers de tonnes</td>
<td>10 662,0</td>
<td>4 625,8</td>
<td>9 975,2</td>
<td>6 959,2</td>
<td>26 840,6</td>
<td>179 405,2</td>
</tr>
<tr>
<td>en t/hab</td>
<td>20,3</td>
<td>21,1</td>
<td>18,0</td>
<td>20,2</td>
<td>16,3</td>
<td>2,8</td>
</tr>
<tr>
<td>en t/km²</td>
<td>1 216,7</td>
<td>678,6</td>
<td>1 163,3</td>
<td>937,0</td>
<td>849,9</td>
<td>280,1</td>
</tr>
<tr>
<td>DMI</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>en milliers de tonnes</td>
<td>17 203,0</td>
<td>9 646,0</td>
<td>20 666,6</td>
<td>12 755,5</td>
<td>54 889,4</td>
<td>960 546,5</td>
</tr>
<tr>
<td>en t/hab</td>
<td>32,7</td>
<td>44,0</td>
<td>37,2</td>
<td>37,1</td>
<td>33,4</td>
<td>14,9</td>
</tr>
<tr>
<td>en t/km²</td>
<td>1 963,1</td>
<td>1 415,0</td>
<td>2 410,1</td>
<td>1 717,4</td>
<td>1 738,0</td>
<td>1 499,4</td>
</tr>
<tr>
<td>DMC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>en milliers de tonnes</td>
<td>6 541,0</td>
<td>5 020,1</td>
<td>10 691,4</td>
<td>5 796,3</td>
<td>28 048,8</td>
<td>781 141,2</td>
</tr>
<tr>
<td>en t/hab</td>
<td>12,4</td>
<td>22,9</td>
<td>19,2</td>
<td>16,8</td>
<td>17,1</td>
<td>12,1</td>
</tr>
<tr>
<td>en t/km²</td>
<td>746,4</td>
<td>736,4</td>
<td>1 246,8</td>
<td>780,4</td>
<td>888,1</td>
<td>1 219,4</td>
</tr>
<tr>
<td>PTB</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>en milliers de tonnes</td>
<td>1 243,9</td>
<td>- 844,2</td>
<td>2 844,1</td>
<td>- 480,2</td>
<td>275,9</td>
<td>144 963,9</td>
</tr>
<tr>
<td>en t/hab</td>
<td>- 2,4</td>
<td>- 3,8</td>
<td>5,1</td>
<td>- 1,4</td>
<td>0,2</td>
<td>2,2</td>
</tr>
<tr>
<td>en t/km²</td>
<td>- 141,9</td>
<td>- 123,8</td>
<td>331,7</td>
<td>- 64,7</td>
<td>8,7</td>
<td>226,3</td>
</tr>
<tr>
<td>DPO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>en milliers de tonnes</td>
<td>5 283,4</td>
<td>2 632,4</td>
<td>6 318,1</td>
<td>3 496,6</td>
<td>17 730,5</td>
<td>570 000,0</td>
</tr>
<tr>
<td>en t/hab</td>
<td>10,1</td>
<td>12,0</td>
<td>11,4</td>
<td>10,2</td>
<td>10,8</td>
<td>8,7</td>
</tr>
<tr>
<td>en t/km²</td>
<td>602,9</td>
<td>386,2</td>
<td>736,8</td>
<td>470,8</td>
<td>561,4</td>
<td>889,8</td>
</tr>
<tr>
<td>TDO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>en milliers de tonnes</td>
<td>12 109,4</td>
<td>5 497,9</td>
<td>10 547,2</td>
<td>8 783,0</td>
<td>37 788,6</td>
<td></td>
</tr>
<tr>
<td>en t/hab</td>
<td>23,0</td>
<td>25,1</td>
<td>19,0</td>
<td>25,5</td>
<td>23,0</td>
<td></td>
</tr>
<tr>
<td>en t/km²</td>
<td>1 381,9</td>
<td>806,5</td>
<td>1 230,0</td>
<td>1 182,6</td>
<td>1 196,5</td>
<td></td>
</tr>
<tr>
<td>NAS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>en milliers de tonnes</td>
<td>2 504,6</td>
<td>1 815,3</td>
<td>4 045,0</td>
<td>2 650,9</td>
<td>11 015,8</td>
<td>396 000,0</td>
</tr>
<tr>
<td>en t/hab</td>
<td>4,8</td>
<td>8,3</td>
<td>7,3</td>
<td>7,7</td>
<td>6,7</td>
<td>6,1</td>
</tr>
<tr>
<td>en t/km²</td>
<td>285,8</td>
<td>266,3</td>
<td>471,7</td>
<td>356,9</td>
<td>348,8</td>
<td>618,2</td>
</tr>
</tbody>
</table>

| Intensité matières | en kg/euro | 0,76 | 0,44 |

1 Population et superficie de la France avec DOM-TOM utilisées pour les calculs : 64 612 939 habitants, 640 294 km².

Sources : Alterre Bourgogne 2013, SSeS
Ce que révèle le métabolisme territorial

Les figures 3.3 à 3.5 ci-dessous présentent les analyses de flux de matières des régions Île-de-France (2003), Midi-Pyrénées (2006) et Bourgogne (2010). Dans les deux derniers cas, seuls les flux directs ont été comptabilisés, tandis que l’AFM de la région Bourgogne mentionne non seulement les flux directs, mais aussi les flux indirects.

Figure 3.3 : AFM de la région Île-de-France en 2003

<table>
<thead>
<tr>
<th>En milliers de tonnes (tonnes par habitant)</th>
<th>Sorties</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flux d’équilibrage (BI) 107 000 (9,5)</td>
<td>Extr. int. utilisée 23 500 (2,1)</td>
</tr>
<tr>
<td>Extrations 114 400 (10,2)</td>
<td>Importations 80 800 (7,2)</td>
</tr>
<tr>
<td>Recyclage 7 300 (0,7)</td>
<td>Addition nette au stock 29 300 (2,6)</td>
</tr>
</tbody>
</table>

Figure 3.4 : AFM de la région Midi-Pyrénées en 2006

<table>
<thead>
<tr>
<th>En milliers de tonnes (tonnes par habitant)</th>
<th>Sorties</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flux d’équilibrage (BI) 24 000 (8,6)</td>
<td>Extraction intérieure utilisée 47 000 (16,9)</td>
</tr>
<tr>
<td>Extractions 24 600 (8,8)</td>
<td>Importations 27 100 (16,5)</td>
</tr>
<tr>
<td>Recyclage 7 300 (1,3)</td>
<td>Addition nette au stock 32 800 (11,8)</td>
</tr>
</tbody>
</table>

Figure 3.5 : AFM de la région Bourgogne en 2010

<table>
<thead>
<tr>
<th>En milliers de tonnes (tonnes par habitant)</th>
<th>Sorties</th>
</tr>
</thead>
<tbody>
<tr>
<td>Flux d’équilibrage (BI) 15 800 (9,6)</td>
<td>Extraction intérieure utilisée 27 800 (16,9)</td>
</tr>
<tr>
<td>Extractions 15 100 (9,2)</td>
<td>Exportations 26 800 (16,3)</td>
</tr>
<tr>
<td>Recyclage 4 000 à 5 500 (2,43 à 3,04)</td>
<td>Addition nette au stock 11 000 (6,7)</td>
</tr>
</tbody>
</table>

Flux indirects associés aux importations 131 400 (79,9)

Flux indirects associés aux exportations 120 600 (73,3)

Source : S. Barles, 2009

Source : S. Barles, 2014

Source : Alterre Bourgogne, 2013
Les quantités de matières mises en jeu à l’échelle d’un territoire régional sont très importantes

L’importance des flux mis en jeu par le fonctionnement régional, malgré les grandes différences qui existent entre les trois régions étudiées, se mesure rien qu’à considérer les flux directs. La prise en compte des flux indirects et de l’extraction inutilisée (Bourgogne) renforce ce constat. La simple observation des trois figures ci-dessus confirme l’enjeu global de la dématérialisation de l’économie.

Les flux entrants

Pour son fonctionnement annuel (année 2010), la région Bourgogne a besoin de faire « entrer » dans son système socio-économique près de 55 millions de tonnes de matières (masse équivalente à autant de voitures), soit 33,5 tonnes par habitant (t/hab). Ce chiffre se décompose en 17 t/hab/an d’extraction intérieure utilisée et 16,5 t/hab/an d’importations. 49 % (soit I = 27 Mt) des entrées directes de matières (DMI) proviennent ainsi de l’extérieur de la région. Les provenances des importations de matières pour la Bourgogne se décomposent de la manière suivante (tableau 3.3) :

<table>
<thead>
<tr>
<th>Tableau 3.3 : importations en Bourgogne</th>
</tr>
</thead>
<tbody>
<tr>
<td>En milliers de tonnes (kt)</td>
</tr>
<tr>
<td>Reste du monde</td>
</tr>
<tr>
<td>8,50</td>
</tr>
<tr>
<td>Union européenne</td>
</tr>
<tr>
<td>5 937</td>
</tr>
<tr>
<td>France</td>
</tr>
<tr>
<td>21 171</td>
</tr>
<tr>
<td>Importations totales</td>
</tr>
<tr>
<td>27 116</td>
</tr>
<tr>
<td>%</td>
</tr>
<tr>
<td>0,03</td>
</tr>
<tr>
<td>21,90</td>
</tr>
<tr>
<td>78,10</td>
</tr>
<tr>
<td>100,00</td>
</tr>
</tbody>
</table>

Note : ces chiffres peuvent paraître très surprenants de prime abord. Il est évident que les importations proviennent du reste du monde pour s’impor ter quelle région, et en l’occurrence la Bourgogne, ne sont pas égales à zéro ! Ce résultat s’explique par la structure même du dispositif statistique sur les transports de marchandises. Celui-ci fournit des informations sur les origines/destinations des flux, de départements à département, mais uniquement à « l’ordre 1 », c’est-à-dire depuis le dernier ou le prochain chargement. Par exemple, les produits textiles et d’habillement chinois qui sont déchargés au port du Havre puis rechargés sur un camion apparaissent ici comme provenant de France.

A contrario, 51 % de matières sont extraites sur le territoire (soit DEU = 28 Mt), dont 51 % sont de la biomasse et 49 % des minéraux non-métalliques. Ces derniers étant des matériaux pondereux pour la construction, ils sont rarement transportés au-delà d’une centaine de kilomètres (généralement une trentaine). Les quantités et les types de matières entrant dans nos systèmes de production conditionnent également les quantités de déchets solides et d’émissions vers la nature. Quels que soient les flux de matières extraits pour répondre aux besoins des habitants d’un territoire, ils deviennent tôt ou tard, pour la plupart d’entre eux, des déchets.

Les flux sortants

Parallèlement, la masse des flux sortants du système socio-économique bourguignon s’élève à 44,6 Mt, soit 27,1 t/hab, dont près de 40 % sont des émissions vers la nature (DMI = 10 t/hab). Afin de se représenter l’importance de ces chiffres, ils peuvent être comparés à ceux, mieux connus, concernant la collecte de déchets ménagers et assimilés par le service public. En France, ce sont 37,8 millions de tonnes qui ont été collectées en 2009 (Aderme, 2011), soit 0,59 t/hab.

Les rejets vers la nature (DMI) sont ainsi 18 fois supérieurs en Bourgogne. Les entrées directes de matières (DMI) sont, elles, 56 fois supérieures.

Par ailleurs, pour certaines régions, les rejets intérieurs vers la nature (DPO) peuvent dépasser en masse les exportations commerciales. C’est le cas, par exemple, pour la région Midi-Pyrénées (année de référence 2006) pour laquelle DPO = 25 500 kt et E = 20 000 kt.

La performance d’utilisation des ressources à l’échelle régionale est très faible

La notion de performance d’utilisation est ici comprise comme le rapport entre les quantités de matières qui sortent d’un territoire (sous toutes les formes) et celles qui entrent, dans la même année, soit DPO/DMI.

Pour la région Bourgogne en 2010, ce rapport est de 32 %. Cela signifie que pour une année donnée, les rejets intérieurs vers la nature (DPO) représentent près du tiers des entrées directes de matières (DMI). Pour l’Île-de-France, ce rapport atteint 55 % : DPO représente plus de la moitié de DMI.

Ces chiffres traduisent l’importance quantitative des résidus générés par le fonctionnement d’un territoire (ici une région) en une période très courte, la nécessité de leur prise en considération dans les systèmes de comptabilité territoriaux, et l’urgence des actions de dématérialisation de l’économie qui restent encore à mener.

Pour la région Bourgogne, la part des émissions de CO₂, représente plus de 60 % de la DPO (chiffre quasiment identique pour l’Île-de-France). Cela montre bien qu’il est aussi indispensable de « penser » intérieurs atmosphériques pour travailler sur les résidus produits par l’économie. Ceci montre que les politiques de dématérialisation ne peuvent se limiter au recyclage des déchets solides, qui n’évite qu’une part limitée des consommations de ressources et des rejets vers la nature.

La performance d’utilisation des ressources peut également être approchée en prenant en compte l’extraction intérieure inutilisée. Celle-ci vient en effet grossir considérablement les chiffres qui ont été énoncés plus haut puisqu’elle porte l’indicateur TMI, pour la région Bourgogne en 2010, à 46 t/hab (équivalent à 125 kg de matières mobilisées par habitant et par jour), et les rejets intérieurs totaux vers la nature (TDO) à 23 t/hab. C’est la moitié des quantités de matières en entrée ou en sortie du système économique bourguignon. Ce chiffre illustre bien le paradoxe entre l’accroissement des efforts, orientés vers les déchets ménagers comme enjeu environnemental, alors qu’ils ne représentent que 1 kg/hab/jour, soit 125 fois moins que TIM !

Le recyclage répond très partiellement à l’enjeu de dématérialisation de l’économie

La quantification de l’ensemble des émissions vers la nature illustre aussi très clairement la limite du recyclage des déchets solides en termes de dématérialisation de nos sociétés, sans toutefois le remettre en question. Dans le cas de la région Midi-Pyrénées, le recyclage, tel qu’il est actuellement pratiqué, s’élève à 1,3 t/hab, ce qui est faible par rapport aux flux en circulation (DMI = 25,7 t/hab). Si la contribution du recyclage à la limitation des rejets intérieurs vers la nature est significative (il en évite 12 %), sa participation à la dématérialisation est négligeable puisqu’il n’évite que 5 % des besoins en matières (DMI).

Les AFM permettent ainsi de mieux situer les enjeux de la gestion des ressources et de la dématérialisation en pointant les flux autorisant des marges d’amélioration importantes. Une politique de gestion des ressources qui place tous ses efforts sur les pratiques de recyclage ne permettrait pas, à long terme, de répondre efficacement à l’enjeu de diminution des quantités de ressources entrant dans l’économie. Il semble incontournable d’accompagner les changements de pratiques globales de consommation et de modèles économiques de création de richesse (en s’appuyant sur l’économie de fonctionnalité par exemple).
L’addition nette de stock constitue un enjeu présent et à venir
Grâce à la prise en compte des éléments d’équilibrage, l’addition nette de stock (NAS) peut être calculée. L’indicateur NAS correspond principalement aux matériaux de construction qui composent les infrastructures et les bâtiments et traduit non seulement l’importance de l’activité du secteur du bâtiment et des travaux publics, mais aussi l’artificialisation de l’espace. Dans d’autres régions du monde en développement, la NAS est également influencée par l’augmentation des biens matériels dans la société (augmentation du parc automobile par exemple). Pour la Bourgogne, la NAS s’élève à 6,7 t/hab pour 2010. Il faut bien sûr garder présent à l’esprit que ces 6,7 tonnes s’additionnent chaque année aux précédentes. Le stock constitue un enjeu présent, puisque réduire son accroissement contribuerait à la dématérialisation et à une moindre pression sur les ressources. Et un enjeu futur, car le stock d’aujourd’hui peut être considéré comme le déchet ou la ressource de demain.

Les flux indirects sont considérables
En Bourgogne, l’extraction intérieure inutilisée représente plus de 12 t/hab en 2010. Ce chiffre n’est pas très éloigné de l’extraction intérieure utilisée et traduit à nouveau l’importance de la prise en compte des flux matériels non monétaires. Les flux indirects associés aux importations s’élèvent quant à eux à près de 80 t/hab : près de cinq fois les importations directes. Ceci montre que le métabolisme de la région est associé à celui d’autres territoires par des relations d’interdépendance. Une réflexion sur le métabolisme territorial nécessite la prise en compte de ces relations (voir partie 4, Approfondir les AFM par des approches complémentaires). Au final, la mobilisation totale de matières (TMR) s’élève à 125 t/hab, dont 74 % de flux indirects (64 % de flux indirects associés aux importations et 10 % d’extraction locale inutilisée).

Le métabolisme révèle le profil du territoire étudié
La Bourgogne et ses départements
Pour la région Bourgogne, la masse des importations est égale à celle des exportations. Ceci illustre le rôle de la région comme territoire de transit. En effet, la Bourgogne est la première région française pour les kilomètres d’autoroutes parcourus par habitant, et la seconde pour les voies ferrées. Les flux de transit y sont importants : 40 % des flux de marchandises qui traversent la France passent par la Bourgogne. Des sites logistiques multimodaux y sont implantés : trois plates-formes trimodales, une plate-forme bimodale et un terminal rail/route. Les activités liées aux transports et à la logistique sont importantes (1 600 établissements dans les activités de transports de marchandises ou de personnes). Par ailleurs, les matières extraites en Bourgogne représentent plus de 4 % de celles extraites dans l’ensemble du territoire français et l’équivalent de 17 tonnes par Bourguignon, pour une moyenne de 10 tonnes par Français. Ce résultat montre le rôle de la Bourgogne en termes d’approvisionnement en matières. Cela ressort plus particulièrement pour la biomasse issue de l’agriculture et celle issue de la forêt, qui représentent 44 % et 7 % des matières extraites en Bourgogne, alors qu’elles ne pèsent que 36 % et 4 % pour la France. L’AFM reflète ainsi la structure économique régionale.

Si l’on descend à l’échelle des départements, des indicateurs comme la consommation intérieure apparente de matières (DMC) par exemple permettent également de révéler en partie le profil des territoires (figure 3.6). La consommation intérieure apparente de matières (DMC) par habitant est plus faible dans les territoires urbains, qui importent des produits déjà finis, que dans des territoires plus industriels ou agricoles qui extrayent et transforment les ressources. Ce constat est net entre le département de la Côte-d’Or (DMC = 12 t/hab) qui est le plus urbanisé des quatre départements bourguignons, et celui de la Nièvre (DMC = 23 t/hab), département ayant une faible densité de population et une activité agricole et sylvicole importante. La biomasse extraite du sol y est pour une bonne part consommée par les animaux élevés sur place et partiellement exportés ensuite : un animal pèse beaucoup moins que la biomasse qu’il a consommée. La désagrégation des flux confirme ce constat. Pour la Nièvre, plus de la moitié de la DMC est constituée de biomasse végétale, contre moins du tiers pour la Côte-d’Or.

La comparaison de territoires aux caractéristiques très différentes, comme la région Midi-Pyrénées et l’Île-de-France, permet de traduire la disparité des métabolismes en termes de flux matières (S. Barles, 2014).

La région Midi-Pyrénées est en effet l’une des moins peuplées de France : 60 hab/km² sur 45 500 km², en dessous de la moyenne nationale (110 hab/km²), très loin derrière l'Île-de-France (930 hab/km²). La population urbaine y est de l’ordre de 67 %, avec néanmoins de fortes disparités. Les sols artificialisés couvrent à peine 3 % du territoire essentiellement rural et dans une moindre mesure montagnard, contre 21 % dans la plate île-de-France. L’économie est aussi très différente d’une région à l’autre, de même que le produit intérieur brut, neuf fois plus élevé en Île-de-France en volume, et supérieur de 40 % par emploi.

En Île-de-France, la DMI par habitant est deux fois moins importante qu’en Midi-Pyrénées, la DEU huit fois moins importante, la NAS est divisée par un peu moins de cinq, la DMC est près de trois fois moindre. Ces disparités ne révèlent pas une meilleure efficacité dans l'utilisation des ressources en Île-de-France, mais traduisent son statut de région consommatrice car très urbanisée, malgré sa surface agricole non négligeable. À l’opposé, la région Midi-Pyrénées est productrice, notamment de matières agricoles. Les quantités totales de matière mises en jeu par l’Île-de-France sont par ailleurs considérables, surtout si elles sont ramenées aux t/ha (densité) ou si les masses totales sont prises en compte.

5 L’AFM de l’Île-de-France a été réalisée pour l’année 2003 et celle de Midi-Pyrénées pour 2006, mais on peut considérer que la variation temporelle du métabolisme territorial est suffisamment lente pour que la différence entre les années d’observation n’affecte pas les résultats.

Source : Alterre Bourgogne, 2013
Les comparaisons entre territoires indiquent par ailleurs une très faible NAS par habitant dans les territoires urbains très denses. Ceci traduit une forme de saturation matérielle, contrairement aux régions en voie d’urbanisation, d’étalonnage urbain et de périurbanisation, où l’accumulation de matières joue un rôle important.

Premiers enseignements des AFM territoriales

Ainsi, les AFM permettent d’établir des relations entre le flux de matières et :

- l’utilisation des sols : importance des activités agricoles, de l’étalement urbain, etc. ;
- les activités caractéristiques des territoires d’étude : les activités d’extraction et de transformation engendrent des flux directs plus importants que celles de consommation qui sont associées à des flux indirects plus élevés ; les territoires d’échange, marqués par les infrastructures de transport, se distinguent par un « effet transit » ;
- le gradient urbain-rural : la comparaison Ile-de-France et Midi-Pyrénées montre que pratiquement tous les flux par habitant décroissent avec l’urbanisation : l’extraction locale (quasi nulle en milieu urbain dense), l’addition au stock, les rejets vers la nature, les exportations, le recyclage. Seules les importations demeurent relativement similaires d’une région à l’autre.

Les territoires peuvent aussi être caractérisés en renvoyant en première approche à quatre métabolismes types : productif, d’accumulation, consommateur, d’échange qui se combinent pour former le métabolisme d’un territoire donné.

La désagrégation des flux : les principales matières consommées

Le bilan d’ensemble a pour objectif de donner une image du profil du territoire, d’enclencher une chronique d’observation, et d’identifier des enjeux plus spécifiques sur certains flux à travers la désagrégation, illustrée ici à travers les exemples sur les matériaux de construction et les fruits et légumes.

Les principaux flux

La figure 3.7 désagrège la DMC pour différents territoires et montre l’importance relative des différentes catégories de produits. À l’exception de l’ensemble formé par Paris et la petite couronne (PPC, i.e. Paris et ses trois départements limitrophes), trois flux dominent quantitativement tous les autres : les matériaux de construction, les produits agricoles et alimentaires et les combustibles fossiles. Ceci traduit l’importance de ces trois catégories de produits dans la perspective de la dématérialisation et de l’économie, en grandes masses, des ressources (ce qui ne signifie pas que d’autres enjeux ne sont pas attachés aux autres produits, notamment en lien avec des ressources rares ou des impacts sanitaires et environnementaux).
La différence entre la consommation par habitant (intensité de la consommation) et la consommation surfacique (densité de consommation) se retrouve ici. Le gradient urbain-rural mentionné plus haut se révèle, en particulier pour les résultats départementaux. La densité de consommation, associée à son importance absolue, montre que c’est probablement en milieu urbain qu’il est le plus facile d’agir sur ces consommations.

Matériaux de construction⁶

Les flux de matières sont très fortement influencés par la consommation du secteur du bâtiment et des travaux publics, et les matériaux de construction restent souvent les flux de matières les plus importants. Paradoxalement, ces flux restent relativement absents des stratégies de dématérialisation⁷.

L’extraction locale de sable et de granulats représente une part très importante du total des matières extraites sur un territoire⁸ (souvent plus de la moitié). Par conséquent, elle peut facilement constituer un tiers de l’indicateur DMI (entrée directe de matières).

La figure 3.8 présente deux bilans dédiés aux flux de matériaux de construction.

La région Île-de-France, déjà très pourvue en infrastructures et au sein de laquelle le renouvellement urbain joue un rôle important dans l’activité du bâtiment, est en situation de pénurie en matériaux de construction. Elle importe plus qu’elle extrait localement. Les exportations sont très faibles. La DMC pour ces matières se répartit en 42 % d’addition au stock et 48 % de mise en décharge. C’est l’effet des démolitions liées au renouvellement urbain. Le recyclage est très faible également. Dans ce cas, une politique de valorisation des déchets du BTP permettrait d’éviter une partie non négligeable de la consommation.

En revanche, la région Midi-Pyrénées est quasiment autonome en termes d’entrées de matériaux de construction. La DMC est à 90 % représentée par l’addition au stock, contre 10 % pour la mise en décharge. Les processus d’urbanisation y sont dominés par l’étalement urbain et la périurbanisation associée à la création d’infrastructures. L’enjeu y est certes important en termes de recyclage, mais il l’est plus encore en termes de dématérialisation absolue, donc de maîtrise des processus d’urbanisation. Le principe fondateur de la symbiose industrielle, selon lequel remplacer les ressources neuves par des matières premières secondaires, constitue la clé de la dématérialisation trouvée ici ses limites.

Une analyse plus approfondie mettant en relation ces flux, l’activité de construction et l’artificialisation des sols (S. Barles, 2014) confirme la corrélation entre consommation de matériaux de construction, processus d’urbanisation et formes urbaines.

⁶ Cette analyse est tirée de Barles, 2014.

La figure 3.8 présente deux bilans dédiés aux flux de matériaux de construction.

La région Île-de-France, déjà très pourvue en infrastructures et au sein de laquelle le renouvellement urbain joue un rôle important dans l’activité du bâtiment, est en situation de pénurie en matériaux de construction. Elle importe plus qu’elle extrait localement. Les exportations sont très faibles. La DMC pour ces matières se répartit en 42 % d’addition au stock et 48 % de mise en décharge. C’est l’effet des démolitions liées au renouvellement urbain. Le recyclage est très faible également. Dans ce cas, une politique de valorisation des déchets du BTP permettrait d’éviter une partie non négligeable de la consommation.

En revanche, la région Midi-Pyrénées est quasiment autonome en termes d’entrées de matériaux de construction. La DMC est à 90 % représentée par l’addition au stock, contre 10 % pour la mise en décharge. Les processus d’urbanisation y sont dominés par l’étalement urbain et la périurbanisation associée à la création d’infrastructures. L’enjeu y est certes important en termes de recyclage, mais il l’est plus encore en termes de dématérialisation absolue, donc de maîtrise des processus d’urbanisation. Le principe fondateur de la symbiose industrielle, selon lequel remplacer les ressources neuves par des matières premières secondaires, constitue la clé de la dématérialisation trouve ici ses limites.

Une analyse plus approfondie mettant en relation ces flux, l’activité de construction et l’artificialisation des sols (S. Barles, 2014) confirme la corrélation entre consommation de matériaux de construction, processus d’urbanisation et formes urbaines.

Une analyse plus approfondie mettant en relation ces flux, l’activité de construction et l’artificialisation des sols (S. Barles, 2014) confirme la corrélation entre consommation de matériaux de construction, processus d’urbanisation et formes urbaines.

Une analyse plus approfondie mettant en relation ces flux, l’activité de construction et l’artificialisation des sols (S. Barles, 2014) confirme la corrélation entre consommation de matériaux de construction, processus d’urbanisation et formes urbaines.
Fruits et légumes en Haute-Garonne

Les pratiques de relocalisation des systèmes d’approvisionnement alimentaire, notamment en milieu urbain, se développent de plus en plus à travers de multiples initiatives associées aux circuits courts, à l’agriculture urbaine et périurbaine.

La volonté de relocaliser l’économie procède de motivations très diverses. Elle se trouve au croisement de considérations environnementales (réduire les consommations énergétiques), socio-économiques (maintenir ou créer de l’emploi) ou politiques (proposer une alternative à la mondialisation).

Paradoxalement, peu d’initiatives font l’objet d’une caractérisation de la situation actuelle en matière d’approvisionnement alimentaire du territoire. Les analyses de flux de matières, lorsqu’elles sont orientées vers des flux spécifiques de produits alimentaires, viennent contribuer à cette connaissance et permettent aux villes et territoires de connaître les provenances des produits consommés, ainsi que leur capacité à se nourrir.

L’exemple présenté concerne les flux de fruits et légumes pour le département de la Haute-Garonne (tableau 3.4).

Au total, la DMC s’élève à 274 kg/hab/an pour le département. Notons, par ailleurs, que cette consommation ne reflète pas la consommation finale des ménages, puisqu’elle inclut les pertes intervenant aux divers stades de la transformation, du transport, de la distribution, du stockage et de la préparation.

L’écart entre la DEU et la DMC est considérable, la seconde représentant près de dix fois la première, ce qui traduit la dépendance du département à l’égard de l’extérieur pour son approvisionnement. En d’autres termes, il faudrait multiplier la production du département par dix pour atteindre l’autosuffisance théorique.

La distance entre DMI et DMC est tout aussi considérable, avec DMI = 3,9 DMC. La fonction d’échange prime donc largement sur celle d’approvisionnement, puisque 75 % des entrées totales sortent du département. Au total, la DMI représente près de 40 fois la DEU. C’est dire si le trafic des fruits et légumes dans le département de la Haute-Garonne est étranger à leur production locale. La présence d’infrastructures à vocation régionale contribue à expliquer cette situation, qu’il s’agisse des centrales d’achat ou du marché d’intérêt national de Toulouse (baptisé Les Halles du Sud-Ouest). Ce dernier a traité, en 2007, 304 kt de fruits et légumes (FFMIN, 2010).

La détermination des aires d’approvisionnement et des destinations des fruits et légumes est une étape complémentaire dans l’établissement d’une vision complète concernant la situation de ce flux. Dans le cas de la Haute-Garonne, les aires d’approvisionnement ont été définies de la façon suivante :
- un premier cercle d’approvisionnement/destination constitué des six départements limitrophes de la Haute-Garonne ;
- un deuxième cercle d’approvisionnement/destination constitué des sept départements adjacents à ceux-ci ;
- le reste de la France ;
- le reste du monde qui, dans ce cas, est essentiellement constitué par le reste de l’Europe.

Tableau 3.4 : origine et destination des fruits et légumes en Haute-Garonne en 2006

<table>
<thead>
<tr>
<th>En kt</th>
<th>DEU</th>
<th>I France</th>
<th>I Monde</th>
<th>DMI</th>
<th>E France</th>
<th>E Monde</th>
<th>E</th>
<th>DMC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agrumes</td>
<td>0,0</td>
<td>0,0</td>
<td>11,7</td>
<td>11,7</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>11,7</td>
</tr>
<tr>
<td>Autres fruits et noix frais</td>
<td>1,3</td>
<td>116,0</td>
<td>6,5</td>
<td>123,8</td>
<td>38,0</td>
<td>9,1</td>
<td>47,1</td>
<td>76,7</td>
</tr>
<tr>
<td>Fruits congelés, séchés ou déshydratés, préparations et conserves de fruits</td>
<td>0,0</td>
<td>14,1</td>
<td>12,0</td>
<td>26,2</td>
<td>47,1</td>
<td>0,1</td>
<td>47,3</td>
<td>-21,1</td>
</tr>
<tr>
<td>Total fruits</td>
<td>1,3</td>
<td>130,1</td>
<td>30,2</td>
<td>161,6</td>
<td>85,2</td>
<td>9,2</td>
<td>94,4</td>
<td>67,3</td>
</tr>
<tr>
<td>Autres légumes frais ou congelés</td>
<td>33,0</td>
<td>1 034,6</td>
<td>11,3</td>
<td>1 078,8</td>
<td>786,9</td>
<td>1,1</td>
<td>788,0</td>
<td>290,8</td>
</tr>
<tr>
<td>Légumes secs</td>
<td>0,2</td>
<td>19,1</td>
<td>0,0</td>
<td>19,3</td>
<td>53,9</td>
<td>5,7</td>
<td>59,5</td>
<td>-40,3</td>
</tr>
<tr>
<td>Préparations et conserves à base de légumes</td>
<td>0,0</td>
<td>0,0</td>
<td>7,8</td>
<td>7,8</td>
<td>0,0</td>
<td>0,0</td>
<td>0,0</td>
<td>7,8</td>
</tr>
<tr>
<td>Total légumes</td>
<td>33,1</td>
<td>1 053,6</td>
<td>19,2</td>
<td>1 105,9</td>
<td>840,8</td>
<td>6,8</td>
<td>847,6</td>
<td>258,3</td>
</tr>
<tr>
<td>Ensemble fruits et légumes</td>
<td>34,4</td>
<td>1 183,7</td>
<td>49,4</td>
<td>1 267,6</td>
<td>926,0</td>
<td>16,0</td>
<td>942,0</td>
<td>325,6</td>
</tr>
<tr>
<td>Kg/hab/an</td>
<td>29</td>
<td>998</td>
<td>42</td>
<td>1 068</td>
<td>781</td>
<td>14</td>
<td>794</td>
<td>274</td>
</tr>
</tbody>
</table>

Source : S. Barles, 2013.
Les résultats sont présentés dans la figure 3.9. Le schéma global des origines ou des destinations (figure 3.9.b) montre que les flux demeurent essentiellement nationaux, avec 96 % des entrées et 99,6 % des destinations. Les échanges avec l’Espagne et l’Andorre sont très faibles (non représentés ici mais pris en compte dans le graphique 3.9.c) : 2 % en entrée et 1 % en sortie, du même ordre que les échanges avec le reste de l’Europe. Les échanges avec le reste du monde sont négligeables.

La répartition des flux à l’intérieur de la France souligne une différence assez importante entre les flux entrants et les flux sortants. Pour l’approvisionnement, le premier cercle et l’extraction locale représentent moins d’un quart des entrées (22 %), de même que le second cercle (24 %), la moitié restante étant fournie par le reste de la France.

Pour les sorties, les flux se répartissent en quatre parts de même ordre de grandeur, l’ensemble formé par la Haute-Garonne et le premier cercle recevant 55 % des flux, 73 % si on y ajoute le second cercle.

La Haute-Garonne jouerait ainsi un rôle relatif de concentrateur de flux puisque son aire de diffusion est plus petite que son aire d’approvisionnement (lorsqu’elles sont toutes deux pondérées). Par ailleurs, il existe dans les deux cas un effet de proximité. Ni les entrées, ni les sorties ne sont indifférentes à la localisation et privilégient la localisation la plus proche, toutes choses égales par ailleurs, l’effet de proximité étant plus important en sortie qu’en entrée.

L’intégration d’une analyse via les tonnes.km (figure 3.9.c) permet d’évaluer une distance moyenne d’approvisionnement de 320 km, ainsi qu’une distance moyenne de diffusion de 170 km, près de deux fois moins. Mais dans un cas comme dans l’autre, force est de constater l’importance des aires d’approvisionnement et de diffusion.

Figure 3.9 : l’approvisionnement en fruits et légumes de la Haute-Garonne

1) Premier et deuxième cercles d’approvisionnement.
2) Origine et destination en masse en kt.
3) Origine (a) et destination (b) en kt.km.
Comparaison avec les indicateurs nationaux

Le tableau 3.5 présente les principaux indicateurs matériels issus de quatre AFM : Bourgogne (2010), Midi-Pyrénées (2006), Ile-de-France (2003), France (2010). Les différences observées entre les échelles régionale et nationale respectivement s’expliquent par deux raisons. D’une part, chaque région se caractérise par un profil métabolique différent. Les chiffres nationaux représentant, lorsqu’ils sont exprimés en t/hab, une moyenne, en particulier pour des indicateurs tels que DMC, DPO ou NAS. D’autre part, il faut noter un effet d’échelle impor-
tant pour les importations et les exportations. À l’échelle nationale, I et E représentent les flux provenant de ou émis vers d’autres pays. Tandis qu’à l’échelle régionale, l’importation différent par des flux provenant d’autres régions ou d’autres pays. Ceci explique que l et E soient en règle générale beaucoup plus élevés aux échelles infranationales qu’à l’échelle nationale. Les régions (ou les départements) échangent beaucoup entre eux, ces échanges intérieurs à la France sont gommés dès lors que les calculs sont effectués à son échelle.

<table>
<thead>
<tr>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Bourgogne</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>DEU</td>
</tr>
<tr>
<td>I</td>
</tr>
<tr>
<td>DMI</td>
</tr>
<tr>
<td>BI</td>
</tr>
<tr>
<td>E</td>
</tr>
<tr>
<td>DPO</td>
</tr>
<tr>
<td>DMO</td>
</tr>
<tr>
<td>BO</td>
</tr>
<tr>
<td>DMC</td>
</tr>
<tr>
<td>NAS</td>
</tr>
</tbody>
</table>

Sources : S. Barles, Alterre Bourgogne, SOeS
Coût de réalisation d’une analyse de flux de matières* à une échelle régionale et départementale

La réalisation d’une analyse des flux de matières* à l’échelle d’une région et de ses départements comprend trois grandes étapes.

Phase 1
La définition du projet, la mobilisation des financeurs, la constitution et les réunions du comité technique de suivi.
Estimation du temps de travail : 10 jours.

Phase 2
La collecte de données, l’organisation de la base de données, la recherche de données manquantes et/ou leur estimation, le traitement des résultats.
Estimation du temps de travail : 45 jours.

Phase 3
L’analyse des résultats, leur valorisation, le partage et la pérennisation du dispositif de comptabilité.
Estimation du temps de travail : 30 jours.

Certaines phases de l’étude peuvent être réalisées par un prestataire extérieur, notamment les phases 2 et 3. Il est également possible de former une ou plusieurs personnes afin de participer à l’élaboration de l’étude et assurer ainsi le suivi et l’actualisation des données dans le temps.
Comptabilité des flux de matières dans les régions et les départements
La comptabilité des flux de matières : perspectives et recommandations
Le contexte mondial

Au regard des conséquences sociales et économiques que provoquaient des pénuries d’approvisionnement et une dégradation massive des services fournis par les écosystèmes, il est largement reconnu qu’un scénario au fil de l’eau n’est pas une option à retenir pour l’avenir de l’humanité.

Le pic de production des énergies fossiles, peut-être celui du phosphore, ou d’autres matériaux, entraînera inévitablement une hausse de leur prix. Les principales personnes et régions du monde qui en subiront les conséquences seront celles aux revenus les plus faibles. Les stratégies et actions de déméaterialisation1 et de découplage2 doivent ainsi intégrer ces enjeux sociaux. La récente mise à l’agenda de ces questions par le PNUE en constitue une illustration.

Les orientations à suivre pour anticiper ces risques impliquent de modérer considérablement les politiques publiques, le comportement des entreprises et les modes de consommation du grand public. Ce changement passera par de nombreuses innovations, technologiques, mais surtout organisationnelles.

Même si les outils de pilotage stratégique permettant de découpler3 la notion de « développement », en dépassant le seul développement économique, de celle de « consommation des ressources » (comptabilisée en tonnes ou en tonnes par habitant) doivent encore être largement développés, une première approche pragmatique est de préciser la situation actuelle et de mieux comprendre la dimension physique de l’économie.

De nombreux pays ont consacré ces dix dernières années d’importants travaux aux analyses de flux de matières, principalement à l’échelle des nations (economy-wide material flow analysis). Ils portent, pour la plupart, sur l’élaboration de méthodologies et sur le défrichage nécessaire à la mise en place de comptes pour calculer des indicateurs de flux de matières. Les indicateurs tels que la consommation intérieure apparente de matières (DMC)4 et la productivité des ressources (PIB/DMC) ont été retenus comme des indicateurs de développement durable aux niveaux européen et français pour qualifier la consommation et la production durables. Ils doivent être complétés par d’autres indicateurs d’impacts à l’échelle européenne.

Une contribution au pilotage des politiques publiques en matière de gestion des ressources

En France, le choix récent de l’économie circulaire5 et de l’écologie industrielle6 et territoriale comme axes stratégiques majeurs des politiques de développement des entreprises et des territoires7, traduit la volonté de maitriser les consommations de ressources tout en générant de la valeur ajoutée créatrice d’emplois, souvent non délocalisables.

Dans ce cadre politique global, disposer d’informations quantitatives, fiables, comparables, et réactualisées sur les flux et les stocks de matières est un enjeu incontournable en vue de piloter et suivre dans le temps l’effet des actions menées vers une économie plus sobre dans l’utilisation des ressources. Cette exigence est non seulement vraie aux échelles nationales, mais également à celle des territoires régionaux et locaux.

La méthodologie proposée dans ce guide permet de construire des comptabilités aux échelles départementale et régionale en couvrant la plupart des flux physiques du système socio-économique. Dans leur niveau de développement actuel, ces comptabilités quantifient, dans leurs grandes masses, les quantités de matières mises en jeu et constituent un dispositif d’observation et de suivi des flux. Elles révèlent ainsi des enjeux globaux afin d’orienter et d’évaluer des politiques de diminution des flux de ressources, en entrée comme en sortie, et sans se limiter à une seule catégorie de flux (les déchets par exemple). Elles aident ainsi à établir un état des lieux sur les consommations de ressources d’un territoire8, de comprendre leurs origines et destinations, les niveaux de recyclage par rapport à l’ensemble des quantités de matières mises en jeu, etc., avec la possibilité de distinguer certaines catégories de flux les unes par rapport aux autres.

Les comptabilités de flux de matières à l’échelle territoriale offrent ainsi une base de connaissances importante vers une meilleure compréhension de l’utilisation des ressources matérielles de la société.

Un outil en évolution

La densité de la recherche académique et de l’activité institutionnelle à l’international montre clairement que ces outils sont porteurs d’enjeux importants et en constante évolution. Pour illustrer le caractère central de ces questions, le Panel international sur les ressources, cité plus haut pour ses travaux de prospective, regroupe des experts scientifiques indépendants dont l’action s’apparente à celui du GIEC sur le changement climatique. Cet organisme produit régulièrement des informations sur les réserves de matières premières importantes, stratégiques ou critiques, et évalue l’efficacité avec laquelle ces ressources sont utilisées.

Les comptabilités de flux de matières sont des outils innovants, tant pour les acteurs privés que publics, dans le pilotage et l’évaluation des politiques et actions de gestion des ressources. Ils nécessitent en ce sens une large appropriation pour être pleinement efficaces. Leur expérimentation en est le meilleur moyen et permettra dans le même temps à tous les acteurs concernés de contribuer à faciliter leur élaboration, notamment en produisant et en partageant des données de flux de meilleure qualité. De nombreuses réflexions et initiatives sur des flux spécifiques (déchets, matériaux de construction, etc.) et à différentes échelles spatiales (entreprises, agglomérations, régions, etc.) sont d’ores et déjà en cours. Il s’agirait idéalement de les

1 Voir partie 3 de ce guide.
multiplier et de croiser leurs résultats les unes par rapport aux autres, et ainsi engager une dynamique d’amélioration continue des méthodes et outils en écologie territoriale.

L’État, via le Commissariat général au développement durable, engagera pour sa part un travail de formalisation des données sur les flux d’importation et d’exportation afin de mieux les adapter à la méthode de comptabilité de flux de matières à l’échelle territoriale. Ces données devraient à terme être disponibles auprès des services statistiques des Dreal.

Parmi les autres perspectives importantes de ces outils, il serait nécessaire de se pencher sur les interactions via les flux de matières entre sociétés et biosphère. Les capacités d’approvisionnement en ressources et d’assimilation de la biosphère sont en effet encore très peu connues. Pour cela, il est nécessaire de mettre en regard le métabolisme territorial*, tel que décrit par les analyses de flux de matières, avec la capacité de la biosphère à le soutenir à l’amont – par l’intermédiaire de l’évaluation du stock de ressources mobilisables – et à l’aval – en évaluant le potentiel d’assimilation de la biosphère, ces deux qualités étant intimement liées. Cette articulation conforterait les travaux de certaines régions sur l’évaluation de leur capital naturel dont les résultats pourraient être complémentaires et valorisés dans le cadre d’un croisement des données produites.

Cependant, l’amélioration des connaissances techniques sur les flux de matières ne constitue pas un préalable impératif à l’action. En effet, de nombreuses opportunités d’optimisation des ressources sont souvent issues du bon sens et de la qualité de circulation des informations entre acteurs, autrement dit de la qualité des relations sociales sur les territoires. Le cadre des échanges et des rencontres doit toutefois être lui aussi « organisé » car il n’est pas spontané. Il s’agit ainsi d’atteindre au « dispositif d’observation », un « dispositif d’animation et de coordination », structuré par un mode d’organisation spécifique entre les parties prenantes, dont l’objectif est de développer de manière plus systématique les initiatives de coopération et impulser des changements de comportement.

La sous-partie suivante est ainsi dédiée à une réflexion sur les systèmes d’informations ou plates-formes de connaissances capables de capitaliser et de gérer les données produites sur les flux et adossées à des règles de gouvernance d’acteurs permettant des processus de codécision sur l’utilisation optimale des ressources en circulation sur un territoire* régional.

La dernière sous-partie est quant à elle dédiée à l’approfondissement des connaissances sur le fonctionnement « physique » de notre société* via la réalisation d’études, selon des méthodes complémentaires portant notamment sur la circulation et les stocks de flux de substances, les aires d’approvisionnement et les empreintes environnementales, ainsi que sur les bilans énergétiques et d’eau.
Organiser une gouvernance régionale des flux de ressources

Le cadre stratégique

L'augmentation de l'efficacité de l'utilisation des ressources, couplée à une diminution de leur impact sur l'environnement, fait partie des principaux objectifs d'une politique de transition écologique des territoires. La deuxième feuille de route issue de la Conférence environnementale de septembre 2013 le confirme, en plaçant l'économie circulaire et l'écologie industrielle et territoriale comme des axes stratégiques majeurs à décliner comme des projets de territoires. La réalisation d'études de métabolisme territorial ou de comptabilité de flux de matières à l'échelle territoriale en constitue les outils permettant notamment l'observation et l'identification d'opportunités d'action. Les régions y sont mentionnées afin de s'investir sur la connaissance des gisements d'un territoire (voir encadré).

Le rôle des régions et de leurs partenaires (Dreal, Ademe…) semble alors essentiel afin de mettre en place des agencements institutionnels ayant pour objet de produire des connaissances sur le métabolisme territorial et de faciliter la réalisation d'actions nécessaires à la stabilisation sur le long terme, et si possible à la diminution, des niveaux de consommation des ressources.

La conférence de mise en œuvre du 16 décembre 2013 a confirmé l'échelon régional comme pertinent pour la réflexion stratégique, l'animation et la coordination du développement des démarches et actions d'économie circulaire.

La pertinence de l'échelon régional pour une organisation d'acteurs adaptée

L'échelle territoriale la plus fine permettant actuellement l'établissement d'une comptabilité de flux, sans recourir à des enquêtes spécifiques, est le département, et a fortiori, la région. C'est donc une échelle pertinente pour construire des ADH dont l'objectif est de calculer des indicateurs globaux sur les flux de matières, de disposer d'un cadre de référence, et de piloter l'évaluation des actions de terrain sur la gestion des ressources. La perspective d'évolution de ces outils est de pouvoir les établir à des échelles territoriales locales (agglomération, etc.).

L'échelon régional semble également adapté pour organiser un dispositif facilitant l'application plus systématique des principes de l'écologie territoriale et de l'économie circulaire. Pour illustrer, les programmes opérationnels (PO) 2014-2020 intègreront l'économie circulaire comme un axe important de la stratégie de développement des régions. L'écologie territoriale constitue une réponse transversale aux objectifs thématiques des PO. Les contrats de plan État-régions 2014-2020 soutiennent l'EIT. Les régions, à travers leurs différentes compétences, jouent un rôle essentiel et légitime de mobilisation et d'accompagnement des acteurs publics et privés aux différentes échelles territoriales sur l'économie circulaire et l'EIT. La maîtrise d'outils financiers tels que les fonds structurels européens peuvent leur permettre d’orienter des politiques d’aides et de participer à des investissements garantissant l’intérêt général quant à l'utilisation des ressources. De plus, elles peuvent utiliser le levier de la commande publique dans un objectif d’exemplarité. La région apparaît alors comme pertinente pour assurer une transversalité et une articulation efficaces à la fois entre les acteurs, les thématiques, les échelles territoriales et les niveaux de gouvernance.

9. Accroître la connaissance de flux de déchets et de matières, ainsi que des coûts de financements associés à leur gestion. Simplifier et faciliter l'accès à l'information correspondante, y compris pour le citoyen

Connaissance des gisements d’un territoire

Les Régions s’investiront progressivement dans l’élaboration de stratégies régionales d’économie circulaire, intégrées à terme dans les schémas régionaux de développement économique. Elles se doteront de plates-formes de connaissances des flux de matières au niveau territorial et de connexion entre les acteurs.

La connaissance territoriale des gisements sera renforcée, en incluant les déchets d’activités économiques, en particulier du BTP en lien avec les schémas de carrières.

Information sur les coûts

11. Développer l’écologie industrielle et territoriales (EIT) dans les territoires

La constitution de plates-formes régionales de gestion des ressources

La mise en place de plates-formes régionales de gestion des flux de ressources constitue un objectif important dans le cadre d’une politique régionale de maîtrise des consommations de ressources par les territoires, et donc notre société, et de leur impact sur les écosystèmes.

Un dispositif régional de ce type pourrait ainsi intégrer deux fonctions principales :
• la production de connaissances sur les flux via un système d’information dédié ;
• la gouvernance des flux via une organisation d’acteurs dédiée. L’organisation générale de ces plates-formes pourrait s’appuyer sur le principe présenté dans la figure 4.1.

Figure 4.1 : exemple d’organisation d’une plate-forme régionale de gestion des ressources

Par le caractère intégrateur de sa méthode (tous les flux sont pris en compte, les origines/destinations, etc.), le présent guide constitue un outil essentiel à l’alimentation des plates-formes régionales de gestion des ressources et à la définition de stratégies régionales adaptées aux enjeux. Le déploiement de démarches de métabolisme territorial basées sur cette méthode contribue à identifier en amont les grands enjeux régionaux concernant l’utilisation des ressources. D’autres démarches viennent également y contribuer, notamment celles issues des composantes de l’économie circulaire telles que présentées par l’Ademe :
• la production et l’offre de biens et services, avec l’approvisionnement durable, l’écoconception, les symbioses industrielles, et l’économie de fonctionnalité ;
• la consommation, la demande et le comportement, avec la consommation responsable, l’allongement de la durée d’usage ;
• la gestion des déchets, avec toutes les techniques de recyclage et de valorisation des déchets.

Les recommandations qui peuvent être formulées à ce stade pour la mise en place de ces plateformes régionales de gestion des flux sont les suivantes :

• Produire les connaissances sur les flux à toutes les échelles. Favoriser les échanges entre acteurs

Il est effectivement important de permettre la production de connaissance, selon différentes échelles d’analyse et d’action, de l’entité individuelle (entreprise, habitat) à la région entière, en passant par les flux de matières ou de substances spécifiques, les secteurs, les villes et les territoires locaux. Cela implique une recherche d’harmonisation des systèmes d’information existant ou à créer.

Si les échelles régionales et départementales sont intéressantes pour développer une approche territoriale globale de l’utilisation des flux de matières, les territoires locaux (agglomérations, communautés de communes, pays, etc.) doivent également pouvoir disposer de leur AFM. Descendre à une échelle infra-départementale permettrait ainsi d’identifier des enjeux plus segmentés et définir plus précisément des priorités d’action. C’est l’enjeu de demain.

Les échelles locales sont toutefois les plus adaptées, dès à présent, pour organiser un dispositif d’échanges entre les acteurs, et ainsi favoriser leur connaissance mutuelle vers le développement d’initiatives de coopération plus systématique.
• Inscrire les démarches de métabolisme sur la longue durée

La réalisation d'études de métabolisme est un processus qui s'inscrit dans un temps long, et ce pour les raisons suivantes :

- que ce soit pour la réalisation de diagnostic de flux en entreprises ou d'un métabolisme territorial, il est important d'engager un processus itératif de production et d'amélioration des données. Les actions de transformation du métabolisme exigent par ailleurs de nouvelles formes de coopération, et donc de la confiance, dont l'établissement entre des acteurs diversifiés est relativement long;
- enfin, le stockage des données dans la durée est un enjeu important afin de créer des chroniques pérennes et complètes concernant l'utilisation des ressources. Ceci permet l'analyse rétrospective des trajectoires de fonctionnement d'un territoire, et le suivi dans le temps des politiques et des actions engagées.

• Produire et diffuser des indicateurs de flux de matières

Le déploiement des AFM à l'échelle régionale permet de construire des indicateurs intégrés sur l'utilisation des flux de matières. Ces derniers traduisent les différents enjeux liés à l'utilisation des ressources sur un territoire, caractérisent son métabolisme, et fournissent une base d'information à la définition de stratégies, de politiques et d'actions, mais aussi au suivi de leur efficacité dans le temps. Ces indicateurs sont à comparer à ceux établis au niveau national, tels que la quantité de matières consommée par habitant ou la productivité des ressources, qui font partie des indicateurs de développement durable de la France et de l'Union européenne.

Il s'agira en l'occurrence de compléter l'indicateur national de productivité des matières (PIB/DMC) retenu dans la stratégie nationale de développement durable (2010-2013). En effet, celui-ci :
- ne renseigne pas sur la quantité extraite en valeur absolue ;
- ne prend pas en compte les impacts environnementaux générés par les flux directs.

• Structurer une gouvernance d'acteurs diversifiés

Un territoire efficace dans l'utilisation des ressources a non seulement besoin d'innovation technologique, mais aussi d'innovation dans son système socio-économique, avec de nouveaux modèles en matière de production et de consommation, de gouvernance, accompagnant un changement progressif des modes de vie.

Le développement de démarches d'écologie industrielle et d'écologie territoriale peut ainsi passer par l'organisation de dispositifs de coopération à différentes échelles territoriales. Dans les faits, il s'agit de réaliser une intermédiation permanente entre une large variété d'acteurs sur les territoires (territoires locaux et régions), dont les cultures et les modes de fonctionnements sont différents : entreprises (grands groupes et PME), laboratoires et instituts de recherche (industriels et académiques), collectivités locales (en milieu urbain et rural), structures de l'économie sociale et solidaire (coopératives et insertion par l'activité économique), citoyens. Le résultat de cette intermédiation est une capacité spontanée de la part des acteurs à combiner leurs propres intérêts et ressources. Les ressources sont, non seulement les ressources matérielles (matière, eau, énergie, foncier), gérées dans une logique d'économie circulaire, mais aussi les ressources immatérielles que sont les compétences, les réseaux d'information, la solidarité, etc. Autrement dit, la confiance qui existe entre les acteurs du territoire et la densité de leurs relations constitue un levier important pour identifier systématiquement des opportunités d'action vers une gestion plus efficace des ressources.

Ce climat de confiance ne se décrète pas. Il est nécessaire d'en créer les conditions. Les collaborations multi-acteurs n'étant pas spontanées, il est nécessaire de les identifier, les accompagner et les organiser, via un acteur tiers légitime. La coconstruction est un élément incontournable de ce processus. L'acteur public joue un rôle important dans l'organisation de cette gouvernance, notamment dans l'intégration de l'intérêt général et du long terme.

Les conseils régionaux, les directions régionales de l'Ademe, accompagnés par d'autres acteurs institutionnels tels que les Dreal, ont toute la légitimité de structurer cette gouvernance via par exemple des comités régionaux dédiés à la gestion des ressources.

La fonction d'observation peut être confiée par exemple aux agences régionales de l'énergie et de l'environnement ou à des organismes équivalents lorsqu'elles n'existent pas. Leurs capacités pourraient être étendues à l'ensemble des questions touchant à l'utilisation des ressources et devraient inclure les activités d'information et de conseil à l'intention des pouvoirs publics, des entreprises et des citoyens au sujet des mesures et solutions existantes et disponibles en matière d'efficacité dans l'utilisation des ressources.
Des flux de matières aux flux de substances

Les analyses des flux de matières permettent de connaître les grandes masses mises en jeu par le fonctionnement des territoires et d’identifier les enjeux sous-jacents. Cependant, certaines matières ou substances (molécules ou éléments chimiques spécifiques) peuvent être portées d’autres enjeux que ces analyses ne permettent pas de prendre en compte. L’une des plus connues aujourd’hui est le carbone, dont la circulation au sein de la biosphère est transformée par les activités humaines : augmentation des quantités mises en circulation par extraction des combustibles fossiles, accumulation des surplus dans l’atmosphère qui contribue au changement climatique. Il y a ainsi intérêt à travailler à l’échelle de cette substance.

D’autres sont tout aussi importantes : l’azote est un élément essentiel à la croissance végétale ; constituant des protéines, il est fondamental dans l’alimentation animale et humaine ; entrant dans la composition des explosifs, il joue un rôle majeur dans la société – pour le meilleur et pour le pire. Ces besoins sont satisfaits par l’utilisation de l’azote de l’air, qui en contient 80 %. Aujourd’hui, les procédés industriels et les activités anthropiques sont à l’origine d’un doublement (et au-delà) de la quantité d’azote réactif en circulation dans la biosphère (c’est-à-dire interagissant avec l’environnement, par opposition au gaz azote N₂, qui est inerte). Si l’on ne craint pas l’épuisement de cette ressource, ses excès sous forme d’ammoniac (NH₃) et de nitrates (NO₃⁻) dans les sols et les eaux, de protoxydes d’azote (N₂O) et d’oxydes d’azote (NOₓ) dans l’air sont à l’origine de nombreux problèmes environnementaux : baisse de teneur en oxygène de l’eau, eutrophisation des milieux aquatiques, risques sanitaires, pollution acide, changement climatique, etc. Le terme de cascade de l’azote (Galloway et al., 2003) est employé pour évoquer ces effets en chaîne.

Le phosphore est lui aussi essentiel à la croissance végétale et à l’alimentation animale et humaine. La production agricole mobilise ainsi des quantités importantes de phosphates fossiles dont l’épuisement est aujourd’hui criant, tandis que la circulation du phosphore se traduit par sa dispersion dans l’environnement (sols, eaux douces, océans) avec des conséquences dramatiques en termes d’eutrophisation (Cordell, 2009).

Il en est de même des métaux, qui présentent un risque toxicologique et peuvent affecter les fonctionnements des écosystèmes, si bien que connaître leur circulation et les lieux où ils se sont accumulés du fait des activités humaines (villes, sédiments, etc.) est d’une grande importance. Les polluants dits émergents, tels que les perturbateurs endocriniens et les substances médicamenteuses présentent aussi des risques sanitaires et environnementaux. D’autres substances pourraient être citées en fonction des enjeux et contextes locaux.

L’analyse des flux de substances vise ainsi à décrire et comprendre la circulation des éléments chimiques simples ou de certaines molécules portées d’enjeux. Elle peut s’appuyer sur l’analyse des flux de matières : dans ce cas, les flux globaux identifiés sont ceux concernés par la substance à analyser. Il suffit ensuite d’y appliquer un taux (par exemple, la viande contient 3,4 % d’azote) afin de quantifier les flux de substances. Il faut néanmoins compléter l’analyse en fonction des enjeux identifiés et des processus biogéochimiques mis en jeu. La figure 4.2 montre le bilan d’azote de l’agglomération parisienne et le rôle majeur joué par le système alimentaire d’une part, et le système de transport d’autre part. Le premier se traduit par l’importation d’azote (incorporé dans les aliments), tandis que le second conduit, par la réaction de combustion, à transformer l’azote de l’air en azote réactif (NOₓ et N₂O), c’est-à-dire interagissant avec l’environnement, en contribuant à la pollution acide et au changement climatique.

L’analyse des flux de substances peut aussi être réalisée indépendamment de l’analyse des flux de matières, en identifiant directement les activités, procédés, lieux concernés par la substance recherchée.

Figure 4.2 : bilan d’azote de l’agglomération parisienne, début XXIᵉ siècle

Source : Svirejeva-Hopkins, Reis, 2011

Commissariat général au développement durable • Service de l’observation et des statistiques
Des bilans de matières aux aires d’approvisionnement et empreintes environnementales

Les territoires sont rarement autonomes à l’égard des matières qu’ils consomment : ils importent une part plus ou moins importante d’entre elles. L’aire d’approvisionnement d’un territoire donné est ainsi formée par l’ensemble des territoires qui le fournissent en matières premières, produits finis et autres. Les enjeux qui y sont attachés sont de plusieurs natures et peuvent être inscrits dans la problématique de la solidarité intragénérationnelle. Les enjeux environnementaux concernent la nécessaire prise en compte des effets différés dans l’espace des territoires : une ville, un département, une région, ne peuvent être considérés comme durables que s’ils n’engendrent pas de non-durabilité ailleurs ; dès lors, il est important qu’ils puissent connaître et localiser cet ailleurs. À cela s’ajoute la question des distances d’approvisionnement, compte tenu du rôle du système de transport dans les problématiques environnementales. Des enjeux sociaux et économiques peuvent aussi être identifiés en termes de développement local des territoires émetteurs et récepteurs respectivement.

La méthode qui fait l’objet de ce guide peut être enrichie de la détermination des aires et distances d’approvisionnement : les bases de données de transport de marchandises indiquent en effet la provenance des matières (département pour la France, pays pour le reste du monde), ainsi que le mode de transport utilisé. La limite de ces bases réside néanmoins dans le fait qu’elle ne renseigne que le dernier chargement : un produit peut provenir d’un pays, avoir été déchargé dans un autre, puis rechargé à destination du territoire étudié. Ce problème peut être pris en compte en remontant aux origines de deuxième ordre (origine des flux entrant dans le territoire d’origine), ce qui a été fait par les concepteurs de l’application Amstram (Silvestre et al., 2012). Compte tenu de la grande variété des matières en jeu, il est judicieux de distinguer différentes aires d’approvisionnement : alimentaire, en matériaux de construction, etc.

La figure 4.3. donne une idée du résultat pour les animaux vivants dans le département du Gard (à gauche) et celui du Maine-et-Loire (à droite). L’aire d’approvisionnement est beaucoup plus resserrée pour le Gard, qui est étroitement lié à la Drôme pour ce flux, que pour le Maine-et-Loire, qui tire néanmoins une bonne partie de ses animaux vivants des départements circonvoisins. Dans les deux cas, l’aire d’approvisionnement est quasiment nationale. Les distances d’approvisionnement peuvent être dans un premier temps estimées en calculant la distance orthodromique (prenant en compte la sphéricité de la Terre) entre les barycentres respectifs du territoire d’origine et du territoire de destination, pondérée par la part du flux de matières correspondant dans les entrées totales.

Pour compléter l’analyse, il est possible de déterminer les empreintes environnementales d’un territoire donné. Il s’agit alors d’empreinte spatiale : la surface nécessaire pour nourrir un département par exemple (il faut 12 000 km² pour nourrir l’agglomération parisienne en viande, si l’on considère à la fois les surfaces occupées par le bétail et celles qui sont dédiées à son alimentation – Chatzimpiros, 2011).

Il est possible aussi de déterminer une empreinte azote, phosphore, carbone, etc., c’est-à-dire déterminer les quantités de telle ou telle substance consommée au lieu de production. La figure 4.4. présente l’empreinte azote d’un Francilien. Elle montre que pour lui fournir les 7,7 kg d’azote qu’il consomme chaque année, il a fallu en utiliser 24 à 30 kg, dont 5 à 10 kg proviennent d’Amérique du Sud sous forme de soja destiné à l’alimentation animale, 12 kg proviennent des engrais, 6,5 kg de la fixation naturelle de l’azote de l’air (bactérienne). Elle montre aussi les énormes quantités d’azote dissipées dans l’environnement à toutes les étapes : production des aliments animaux, élevage et, dans une moindre mesure, consommation urbaine.

Ces calculs nécessitent la prise en compte des pratiques agricoles et d’élevage, ou des pratiques industrielles pour d’autres produits dans les aires d’approvisionnement et s’avèrent relativement complexes. Ils sont généralement effectués pour répondre à des besoins de connaissance spécifique.
Complémentarité avec les bilans de flux énergétiques

Comme cela a été indiqué à plusieurs reprises dans ce guide, l’analyse des flux de matières ne prend en compte l’énergie que partiellement et ne constitue pas un bilan énergétique. Il peut être intéressant de le compléter par une analyse des flux d’énergie de façon à avoir une vision d’ensemble du métabolisme territorial. Les méthodes sont nombreuses en la matière et ne seront pas détaillées ici. Néanmoins, un premier choix consiste à déterminer quelle énergie sera comptabilisée.

S’agit-il de l’ensemble de l’énergie, qu’il s’agisse de l’énergie alimentaire ou de l’énergie impliquée dans les différentes activités humaines (que l’on appelle énergie technique), ou bien seulement de cette dernière, comme c’est souvent le cas ? Ce choix n’est pas neutre. Le second est plus classique et plus simple (toutes choses égales par ailleurs) et revient généralement à considérer les grands secteurs d’activité (résidentiel et tertiaire, agricole, industriel, des transports). Le second s’impose dès que l’on s’intéresse aux énergies renouvelables, qui puissent pour partie dans le même gisement que l’énergie alimentaire – les terres arables.

Une autre question émerge alors. Comptabilise-t-on l’énergie finale, i.e. celle qui est délivrée aux consommateurs ? Ou bien l’énergie primaire, c’est-à-dire, pour reprendre la terminologie utilisée dans ce guide, les flux indirects associés à l’énergie finale : pertes lors de la conversion (par exemple de charbon en électricité) et du transport ? Ces deux indicateurs sont porteurs d’enjeux complémentaires, et il serait toujours utile de les calculer conjointement.

La figure 4.5. présente le schéma de principe d’une analyse des flux d’énergie compatible avec l’analyse des flux de matières présentée dans ce guide. Elle permet d’utiliser une partie des données collectées pour cette dernière, à compléter par les flux énergétiques non matériels (électrique, hydraulique, éolien).

![Figure 4.4 : l’empreinte azote d’un Francilien](source : Billen et al., 2012.)
La question de l’eau

Le présent guide exclut de l’AFM les flux d’eau mis en jeu par les territoires, notamment parce qu’ils sont généralement si importants qu’ils « écrasent » tous les autres. Par ailleurs, les enjeux attachés à l’eau ne concernent pas que les flux en circulation, le rôle de l’eau dans les écosystèmes et son statut de vecteur de différentes substances étant tout aussi important.

Afin de compléter l’AFM territoriale par un bilan d’eau, il est possible d’appliquer à cette matière le même principe que celui qui a été retenu pour les autres dans ce guide. L’DEU, correspond à l’eau prélevée au sein du territoire ; les importations, à l’eau prélevée au sein d’autres territoires et acheminée au sein de la zone étudiée ; les exportations, à symétriquement l’eau prélevée au sein de la zone étudiée et acheminée vers d’autres territoires ; les rejets vers la nature, à l’eau renvoyée après usage vers le milieu naturel. À titre d’exemple, la ville de Paris (au sens du département 75) prélève de l’eau de la Seine et de la Marne à l’extérieur de son périmètre, de même qu’elle reçoit des eaux de sources grâce à un réseau d’aqueducs : en ce sens DEU = 0, et DMI = I. Elle n’exporte pas d’eau (i.e. son réseau est limité à son périmètre), donc DMC = DMI = I, et elle rejette dans le milieu aquatique (la Seine et la Marne) l’essentiel de ce qu’elle a utilisé. Cette approche est compatible avec l’AFM telle que présentée dans ce guide, et reste limitée au petit cycle de l’eau, c’est-à-dire à la partie technique de la consommation (technique parce que passant par des dispositifs techniques, i.e. les infrastructures de prélèvement, d’adduction, de distribution et d’évacuation de l’eau). Néanmoins, elle ne rend pas compte de toute la réalité du cycle de l’eau, qui mêle étroitement processus techniques et naturels.

La consommation d’eau : des définitions variées

Selon les approches et les enjeux, la notion de consommation d’eau est très variable. Dans le domaine de l’ingénierie, le terme consommation représente généralement les prélèvements effectués dans le milieu naturel pour des usages urbains, industriels ou agricoles (irrigation, élevage). Cette consommation est distincte de la consommation nette qui désigne la part des prélèvements non restituée au milieu aquatique (évapotranspiration, eau de constitution des produits finis) – eau bleue de l’empreinte aquatique. Cette approche est celle du petit cycle de l’eau.

Au sein des sciences de l’environnement, la consommation d’eau représente en général la part d’eau appropriée par les activités humaines, il s’agit implicitement de la consommation anthropique d’eau. Une telle définition nécessite la prise en compte de l’eau de pluie consommée par la production agricole et sylvicole – eau verte de l’empreinte aquatique, i.e. de la part d’eau de pluie évapotranspirée par les plantes et arbres cultivés, qui s’ajoutera à l’eau d’irrigation et plus généralement aux prélèvements mentionnés plus haut. Cette approche est celle du grand cycle de l’eau.
D’autres méthodes existent, comme par exemple celle de l’emprinte aquatique (Hoekstra & Chapagain, 2007), qui désigne la quantité d’eau nécessaire à la production des biens consommés par un territoire et à l’assimilation de la pollution aquatique induite par cette production, que cette production ait été effectuée au sein du territoire d’étude ou pas. L’emprinte aquatique est formée de la somme de l’eau bleue, i.e. de la consommation nette d’eau (voir encadré), de l’eau verte, i.e. de la consommation d’eau de pluie par l’évapotranspiration des plantes cultivées, et de l’eau grise, i.e. de la quantité d’eau nécessaire à l’assimilation de la pollution. L’eau bleue et l’eau verte forment l’emprinte hydrique qui représente l’impact quantitatif du territoire étudié, tandis que l’eau grise en représente la dimension qualitative.

L’emprinte aquatique est à mettre en relation avec la notion de transfert virtuel d’eau (et non, pour être exact, d’eau virtuelle) : l’eau consommée pour produire au Maroc une tomate exportée dans le Gard a virtuellement été transférée au lieu de consommation, et a été sous-traitée au lieu de production. Ces empreintes permettent de mieux cerner les enjeux environnementaux associés à la consommation, tout comme les enjeux liés au partage des ressources entre territoires (dans l’exemple de la tomate, il est possible de dire que le Gard s’approprie une partie de l’eau marocaine). À l’échelle mondiale, les transferts virtuels entre pays s’élèvent à 2 320 Gm3/an, soit 22 % de l’emprinte aquatique totale (tableau 4.1).

Tableau 4.1 : emprinte aquatique mondiale, moyenne 1996-2005

<table>
<thead>
<tr>
<th>En Gm3/an</th>
<th>Agriculture</th>
<th>Industrie</th>
<th>Domestique</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Verte</td>
<td>6 684</td>
<td>0</td>
<td>0</td>
<td>6 684</td>
</tr>
<tr>
<td>Bleue</td>
<td>945</td>
<td>38</td>
<td>42</td>
<td>1 025</td>
</tr>
<tr>
<td>Grise</td>
<td>733</td>
<td>362</td>
<td>282</td>
<td>1 378</td>
</tr>
<tr>
<td>Total</td>
<td>8 353</td>
<td>400</td>
<td>324</td>
<td>9 087</td>
</tr>
</tbody>
</table>

Note : les prélèvements (voir encadré) s’élèvent quant à eux à 3 900 Gm3/an.

Source : Hoekstra, Mekonnen, 2012
Annexes
Analyse des flux de matières (AFM), appelée aussi comptabilité des flux de matières : l’analyse des flux de matières (AFM) d’un système donné (territoire, filière, activité, etc.) vise à quantifier en masse (i.e. en tonnes, kg/hab, etc.) les flux de matières mobilisés par ce système. L’AFM nécessite au préalable la délimitation du système étudié, pour lequel les flux entrants, sortants, stockés sont quantifiés. L’analyse de résultats permet de caractériser le système du point de vue de ses besoins matériels, de ses échanges avec d’autres systèmes, de sa dépendance à l’égard de l’extérieur, de ses impacts environnementaux (voir l’encadré « Les deux familles de flux de matières » pour plus de précisions sur les techniques de comptabilité).

Découplage (entre production de richesse et pression sur la biosphère) : dans le domaine de l’écologie territoriale, de l’économie de fonctionnalité ou de l’économie circulaire, le terme découplage a d’abord fait référence au lien existant entre production de richesse (la plupart du temps exprimée à l’aide du PIB) et émission de polluants, puis entre production de richesse et consommation de ressources matérielles, dans les deux cas positivement corrélées. Le découplage signifie que la production de richesse (ou de bien-être) s’accompagne d’une diminution des émissions polluantes (dans le premier cas), voire de la consommation matérielle (dans le second). Il est considéré comme l’une des stratégies permettant de répondre aux enjeux sociétaux et environnementaux actuels.

Démétrialisation : la dématérialisation est la réduction en valeur absolue des quantités de matières mises en œuvre par une société ou un système quelconque.

Écologie industrielle : voir écologie territoriale.

Écologie territoriale : partant du constat que la manifestation la plus concrète du fonctionnement des sociétés humaines et de leurs interactions avec la biosphère prend la forme de flux d’énergie et de matières qui forment le métabolisme territorial (voir ci-dessous), l’écologie territoriale, champ de recherche scientifique et d’action, vise à décrire, analyser et comprendre ces flux énergétiques et matériels, voire à contribuer à leur gestion et à leur ménagement (au sens d’art de bien diriger, de bien conduire quelque chose). Ce faisant, elle associe à l’analyse du métabolisme territorial, celle des acteurs, institutions, politiques, techniques qui sont à l’origine de ces flux, c’est-à-dire de la dimension sociale du métabolisme, au côté de celle des processus naturels qui le guident. Elle se distingue de l’écologie industrielle (dédie au métabolisme des activités, voire des sociétés industrielles) par son entrée territoriale et interdisciplinaire et par une intégration plus poussée des processus naturels dans la démarche.

Économie circulaire : l’économie circulaire part du constat de la linéarité du fonctionnement de la société actuelle (qui puise des ressources neuves, les consomme et les rejette) pour défendre une transition vers la circularité. Cette expression s’apparente à un mot d’ordre et a récemment fait son apparition dans les institutions engagées dans des initiatives de manière plus structurée et organisée par la transition écologique ; elle reste peu employée au-delà de ces cercles, à l’exception de la Chine. Elle est cependant présente dans la deuxième feuille de route pour la transition écologique de la Conférence environnementale (septembre 2013), voir écologie territoriale.

Économie de fonctionnalité : l’économie de fonctionnalité vise à substituer la vente des services (ou fonctions) à la vente des biens (ou matières) dans la perspective de la dématérialisation et du découplage (voir ci-dessus).

Métabolisme territorial : le métabolisme territorial désigne l’ensemble des processus de consommation et de transformation de l’énergie et des matières mises en jeu par le fonctionnement des territoires tels que définis ci-dessous. Bien que le terme soit emprunté à la biologie, il ne résulte pas d’une vision organiciste des territoires, mais du constat selon lequel la compréhension, voire le ménagement, de ces flux de matières et d’énergie est l’une des clefs de la caractérisation et de la gestion des territoires. La comptabilité des flux est la base de cette caractérisation. Cette comptabilité peut être énergétique ou, comme c’est le cas dans ce guide, matérielle.

Société/économie : dans la méthode proposée dans ce guide, le système étudié est borné par les limites administratives du territoire considéré et contient sa population humaine, ses activités, ses productions et ses artefacts. Dans la littérature, ce système est le plus souvent temporellement défini par le terme « économie » (implicite au niveau du territoire) et dans le cadre de ce guide, et compte tenu du fait que le métabolisme territorial et l’analyse des flux de matières qui lui est associée ne se limitent pas à étudier les activités économiques, il a semblé plus pertinent de retenir le terme de « société » ou « système socio-économique » pour désigner le système observé.

Système socio-économique : dans le cadre de ce guide, le système étudié est borné dans l’espace par les limites administratives (ou toute autre limite à caractère géographique) du territoire considéré ; il ne contient que la population humaine, ses activités, ses productions et ses artefacts. Le système exclut donc les composantes naturelles du territoire étudié (air, eau, sol). Il est désigné dans le guide par les termes « société » ou « système socio-économique ». Voir aussi société/économie.

Territoire : dans son acception géographique, le territoire peut être considéré comme une portion d’espace terrestre appropriée par les groupes humains qui l’occupent et le transforment, et envisagée dans ses rapports avec ces derniers ; d’un point de vue politique et administratif, il s’agit d’un espace délimité sur lequel s’exerce l’autorité d’un État ou d’une collectivité (voir Merlin, Choay, 2010). Dans ce guide, le territoire est considéré comme l’ensemble constitué par un espace et ses ressources, et la société qui l’habite et interagit avec lui. Le guide étant dédié aux échelles infranationales, il n’y sera pas question du territoire national (sauf mention explicite), et la méthode exposée porte sur des territoires définis par leurs limites administratives : régions et départements.
Références citées

Références complémentaires

Comptabilité des flux de matières dans les régions et les départements

Guide méthodologique

Les territoires sont traversés de flux de matières qui sont aujourd’hui mal connus. Combien de tonnes de matières de toutes natures sont extraites du sol d’un département, d’une région ? Combien sont importées, exportées ? Quel est le tonnage de matériaux de construction qui y est consommé ? Quelle quantité de déchets du bâtiment et des travaux publics y est produite ? Quelle est la consommation de matières alimentaires ? Quels gisements de ressources pourrait-on y identifier ? Face à ces questions pour la plupart sans réponse, une approche quantitative des flux de matières – i.e. une comptabilité matérielle – apparaît ainsi comme une nécessité dans le contexte de la finitude des ressources.

Alors que cette comptabilité est bien établie à l’échelle nationale et fait l’objet d’un rapportage international, très peu de territoires "infranationaux" ont fait l’objet de bilans de matières.

Ce guide, en s’appuyant sur l’initiative de la région Bourgogne, propose une déclinaison territoriale de la méthodologie d’Eurostat pour construire une comptabilité de flux de matières à un échelon infranational, des clés pour analyser les résultats de cette construction tout en reconnaissant les limites de cet exercice et donnant des pistes pour les dépasser.